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Preamble

Before | chose a specific topic to base my project on, | knew | wanted it to relate to
mathematics. The way in which mathematics can be applied to real life problems by employing
mathematical models has always fascinated me. These models come in a variety of shapes
and sizes and allow us to represent natural phenomena using variables and equations. Finding

patterns in seemingly chaotic behaviour is one of mathematics’ many virtues.

Towards the end of 2021, my math teacher, Mr. Preu, introduced my class to differential
equations. Since there exists a method of disease modelling based on differential equations,
namely the SIR model, he thought it might be worth looking into as a potential topic. The SIR
model divides the population into susceptible, infected, and recovered and uses 3 differential

equations to calculate the changes in size of said three groups short term.

During the Coronavirus pandemic, disease modelling and the predictions made using it were

topics widely talked about on the news and therefore on my radar already.

As soon as | started delving into preliminary research regarding the SIR model, | knew it was
something I'd be willing to research more intensively, my final project being the perfect
opportunity to do so. | was intrigued by the prospect of executing my own simulations and
parsing through the generated data. | didn’t want my project to only focus on the disease model
from a mathematical perspective, but also sought to interpret it from an epidemiological

standpoint.

Firstly, | want to thank my math teacher Mr. Preu for suggesting the topic in the first place. |
greatly appreciate the effort he invested in being my mentor and his readiness to answer any
questions | had. I'd also like to thank Professor Kuyos at the University of Zurich for giving me

useful tips for disease simulating and helpful insights.
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1 Introduction

Infectious diseases have accompanied the human species
throughout recorded history. Their emergence and re-
emergence constitute a worldwide health challenge. Some
of these diseases, such as Polio, can inflict mortality on their
hosts. HIV, for example, has accumulated a death toll of
over 40 million people since its widespread emergence in
1981 (WHO, 2022). More than 90% of deaths resulting from
infectious diseases can be attributed to a relatively small
number of diseases (Ashcroft, Bonhoeffer, Kouyos, Regoes
and Stadler, 2020, p.12).

Figure 1: Portrait of Daniel Bernoulli in
1750 (Britannica T. E., 1998)

To improve control over and ultimately eradicate an infection from a population, one can
analyze infectious diseases and develop strategies to mitigate their harm. Some of these
strategies include vaccination and quarantine. Mathematical models can be used as a means
of researching diseases and are employed in epidemiology and many other fields. They can
predict the population-level dynamics of an illness or the impact of vaccination on the spread
of infection. The models discussed in this paper are based on systems of differential equations
that can be solved using a method called numerical integration, which means employing
derivatives of initial values (initial conditions) to extrapolate subsequent values. Numerical
integration encompasses a broad range of algorithms, a few of which will be discussed in later

sections.

The first mathematical model designed to investigate an infectious disease was developed by
the Swiss Mathematician Daniel Bernoulli in 1766 (figure 1). Born in Groningen, he studied
medicine in Heidelberg, Strasbourg, and Basel. His paper on differential equations and the
physics of flowing water granted him a position at the influential Academy of Sciences in St.
Petersburg, Russia (Britanicca, 1998). In the context of Infectious diseases, he is known for
studying the impact of variolation' on smallpox mortality in France. Bernoulli addressed the
impact of variolation on the French population using a modeling study based on differential
equations (Ashcroft et al., 2020, p.18).

' Variolation is an obsolete method of immunization patients against smallpox by infecting them with

substance from the pustules of patients with a mild form of the disease (Britannica, 1998).

6
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Another individual who made valuable contributions to the study of infectious disease
dynamics was Ronald Ross (figure 2, left). He studied medicine, wrote novels, poetry and
plays, and composed music. Being born in India, he became an officer in the Indian Medical
Service. (Britannica, 1998). Concerning infectiology, he independently discovered the mass
action term? and extended this insight into his theory of happenings in which he explicitly
defines the dynamical feedback of infectious diseases (Ashcroft et al., S.25). Ross’
mathematical contributions laid the framework for Kermack and McKendrick’s paper, in which

they first introduced the model this paper seeks to analyze.

Figure 2: Ronald Ross, Anderson G. McKendrick, and William O. Kermack (Britannica T.
E., 1998), (Bacaer N. , 2011)

In a very famous paper published in 1972, William O. Kermack, who was a superintendent of
the Laboratory of the Royal College of Physicians of Edinburgh, and Anderson G. McKendrick,
an employee of Kermack’s, extended Ross’ mathematical framework (Ashcroft et al., 2020,
p.25). They introduced what is today known as the SIR model. The SIR model and its variants

are one of the most important instruments used in theoretical epidemiology.

This begs the question; how do the elements of the SIR model affect predictions made
about disease dynamics, from both a mathematical and epidemiological perspective?
The objective of this paper is to give insight into the basics of compartmental disease modeling®

through theory and implementation using numerical integration methods pertaining to the

2 The mass action term signifies that the number of new infections depends on the number of infected
and susceptibles and thus formalizes the feedback of an infection on itself (Bonhoeffer, Regoes,
Stadler, Kouyos, Ashcroft, 2020, p.21).

3 Disease modeling in which the population is separated into compartments such as susceptible,

infected, and recovered

7
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Runge-Kutta family of integrators. In this work, numerical experiments to find out how the
model parameters 3 and y affect the S, | and R curves, how epidemiological concepts such as
the basic reproduction number influence the dynamics and how elements such as time
stepping, rounding and computational cost of Runge-Kutta integrators interact when solving
the basic SIR model are conducted. How a change in step size or rounding influences accuracy
is analyzed and comparisons of the efficiency of Runge-Kutta methods are made. |
hypothesize that an increase in the basic reproduction number Ro will lead to a higher number
of infected at the disease’s peak. In terms of error analysis, | hypothesize that smaller step
sizes lead to lower errors per step. | also predict that methods that use the least total amount

of function evaluations to approximate a solution, compute the most efficiently.

Chapters in this paper focus solely on explicit Runge-Kutta methods and experiments are
restricted to solving the basic SIR model without demography. The tools used to simulate the
SIR models are the ODE package and its Runge-Kutta solvers in R and manual
implementation in Excel. Parameter values are either chosen by the author or derived from

real data.

The theoretical part of this paper formulates the model equations governing the SIR model and
its variants and introduces basic concepts such as the basic reproduction number and endemic
equilibrium. It also explains the relevance of numerical integration methods and the way they
work. After this follows a section in which the method used in the numerical experiments is
presented and the results are shown, discussed, and compared with theory. Lastly, further

research topics extending the contents of this paper are presented, followed by a reflection.
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2 The SIR Model

2.1 Infectious diseases

The term “disease” includes a variety of ailments ranging from cancer to the flu. Overall,
epidemiologists classify diseases according to several factors. They can either be infectious
or noninfectious (Keeling & Rohani, 2007, p. 2). In his “theory of happenings”, Ronald Ross
(1917, S.507) explicitly defined what sets infectious diseases apart from other illnesses;
“different kinds of happenings may be separated into two classes, namely a) those in which
the frequency of the happening is independent of the number of individuals already affected;
and b) those in which the frequency of the happening depends on this quantity. To class b)
belong infectious diseases.” This describes the dynamical feedback that constitutes a

fundamental characteristic of infectious diseases.

Infectious diseases can be categorized according to their sources. Infecting pathogens can
either be micro- or microparasitic. The former entails small (usually single-cell organisms),
whereas the latter are larger. Microparasites include viruses and bacteria while their
counterpart partially consists of parasitic worms such as helminths or flukes (Keeling & Rohani,
2007, S. 1).

Figure 3: Helminths and flukes (Hoffmann, Brindley, & Berriman, 2014), (Britanicca, 1998)

Globally, there are about 1’415 known pathogens that cause diseases in humans, 53% of

which are microparasites (Cleaveland, Laurenson, & Taylor, 2001).

Within the family of micro- or microparasitic infection, one can subdivide based on whether
transmission happens directly or indirectly (Keeling & Rohani, 2007, p. 4). Direct transmission
occurs through close contact with an infected person. Most microparasitic diseases behave in
such a way. Examples include influenza, HIV, and measles, cholera being an exception.

Indirectly transmitted sicknesses are passed via the environment (eg. water). The disease
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models discussed in subsequent sections are geared towards the inspection of directly

transmitted, microparasitic infectious diseases.

2.2 Types of models

Infectious disease models used in epidemiology can generally be divided into two classes;
deterministic and stochastic (Dadlani, et al., 2013, p. 1). In deterministic models, the population
is separated into smaller groups or compartments, each one of these groups illustrating a
specific stage in the epidemic (Dadlani, et al., 2013, p. 2). Models like these can be expressed
mathematically using systems of differential equations that try to represent what happens on
average when a pathogen is introduced to the population. In mathematics, the word
deterministic denotes the fact that no randomness occurs during the development of future
states. (Darling, 2016). This means that a deterministic system uses earlier states of the
system to determine later states. If something is strongly deterministic, a certain initial condition
will inevitably lead to a certain outcome. Sometimes, the system can be tamely chaotic and
small deviations or errors in data can lead to large deviations in predictions. Stochastic systems
or a stochastic process entails randomness. More specifically, future states cannot be

predicted from past ones. The flipping of a coin would be an example of a stochastic system.

The SIR model falls into the category of deterministic epidemic models and best describes a
situation in which a pathogen causes iliness for a short period (days or weeks) before the host
attains lifelong immunity (Keeling & Rohani, 2007, p. 16). SIR stands for Susceptible
(unexposed to illness), Infected (colonized by pathogen and infectious) and Recovered
(pathogen has cleared host). This denotes the compartments the model divides the total

population into.

10
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2.3 The Basic SIR Model

If we regard the simplest possible case, meaning we neglect birth and death rates, we only
take transitions from S - | and | > R into consideration, as seen in figure 4. This means we
must find a way to mathematically express the movement of individuals from one group to

another, which can be done using differential equations.

o ciovs I

R

Susceptible R

Figure 4: The movement of individuals from one host group to the other (UCLA, 2020).

An infected individual can only move to the recovered class after it has successfully fought
the infection and therefore isn’t infectious anymore. (Keeling & Rohani, 2007, p. 16). Through
clinical data, scientist find an average infectious period p, e.g., the amount of time spent in
the infected class and can derive the recovery rate y, which is defined as 1/ p and is seen as
constant for simplicity purposes. The transition from S to | involves disease transmission, which
depends on a) the amount of infected b) the contact rate between individuals and c) the
probability of transmission given contact between and infected and susceptible. The
transmission rate B represents the average amount of secondary infections caused by an
infected and is defined as the per capita contact rate times the probability of infection (Keeling
& Rohani, 2007, p. 18).

Let’s define k as the contact rate per individual and ¢ as the probability of infection given
contact between infected and susceptible and N as the total population wherein there are Y
infected, X susceptible and R recovered individuals. If we multiply the contact rate k with Y/N,
we get the average amount of infected a susceptible meets in a given time. Multiplying k x Y/N
with ¢ yields the rate at which one susceptible gets infected or 3 x Y/N. This term is also known
as the force of infection A (Keeling & Rohani, 2007, S. 18). The product of the force of infection

and X yield the total rate of transmission to the entire susceptible population.

Using the information gathered above we can derive differential equations 1.1 — 1.3, one for

each compartment (Keeling & Rohani, 2007, p. 18);

dX Y

—— — _B—X (1.1)
dt B N’

dY Y

—— =p—X—~Y, @2)
dt B N T

dR (1.3)

=Y
11 dt T
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It is noteworthy that the transmission term 3 x Y/N x X occurs in both differential equations 1.1
and 1.2. This is because susceptible individuals directly move from X to Y in our model.

Similarly, the term y x Y appears in both 1.2 and 1.3.

For scaled variables (fraction of total population), eq. 2.1-2.3 hold (Keeling & Rohani, 2007, p.
19);

dS

= — _BSI (21)
dt /B ) .
% = pSI —~I, (22)
dR

— — AL (2.3)
a !

In the following sections we will mostly use scaled variables with constant N, thus S+I+R = 1.

2.4 The SIR Model with demography

Let’s look at what happens once we introduce demography e.g., death and birth rates. For this
we introduce the parameters p= birth rate/per capita death rates for S, | and R. This yields
equations 3.1-3.3 (Keeling & Rohani, 2007, p. 27);

dS

— =1 —BSI —uS. (31
dI

— = BIS— 4l —pl, (B2
dR

— — Al - uR. (3.3)
T 7 pR

If we add all three equations together, we notice that dS/dt + dl/dt + dR/dt = 0, hence the total
population size stays the same. The expected life expectancy per individual is 1/u. (Bjornstad,
2018, p. 3)

2.5 Assumptions of the SIR model

The assumptions of eq. 1.1-3.3 are as follows (Ashcroft et al., 2020, S.30-31);

» Constant parameters; all parameters of the model are assumed to be constant. In reality,
[ can depend on the season.

= Mass action kinetics; the overall transmission is proportional to the size of susceptible and

infected, that is Sl. This is justified if both host types are well mixed and homogenous.

12
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» Infections cause acute morbidity, not mortality. This is reasonable for diseases like
chickenpox but not for others like Ebola.

= [Infected individuals move directly into the infectious class (unlike the SEIR model; see later
subsection).

» The model assumes that recovered individuals have lifelong immunity (unlike SI model;

see later subsection).

3 The Basic Reproduction Number Ro

3.1 Meaning

How does one determine if an epidemic will occur or if the disease will fail to spread? To
answer this question, we start by looking at dl/dt at the very beginning, denoting our initial /

and S as lp and S. Initially, if dl/dt > 0, the infection grows.

We write;

S
,650[0—’)’Io>0:>ﬂ50>’7:>%>1 (4)

In epidemiology, B/y denotes the Basic Reproduction Number Ro (Keeling & Rohani, 2007, p.

19-20) and is understood as;

the average number of secondary cases arising from an average primary case in

an entirely susceptible population (So=1).

It essentially measures the maximum reproductive potential for an infection.

From inequality 4, we can use Ro=p/ vy to express the condition on disease invasion;

if Ro > 1, disease invasion occurs

if Ro < 1, disease invasion does not occur

This also means that if So remains under y/B, widespread infection cannot take place. This can
be achieved by immunization, for example through vaccination campaigns. We can interpret
this result as requiring the removal rate y/B, or the inverse of Ro, to be small enough for the
disease to spread (Keeling & Rohani, 2007, p. 20). For the basic SIR model with demography,
Ro =B/ (y +p). This value is generally similar to, but always smaller than, R, for a closed
population. The natural mortality rate actively reduces the average time an individual spends

in the infectious class; instead of 1/y , it's 1/(y+u) (Keeling & Rohani, 2007, p. 28)

13
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The parameters that govern the ordinary differential equations* for S, | and R also control R.
This means that by decreasing the infectious period 1/y or 1/(y+u), for example through
medicine or other types of medical intervention or decreasing B, Rois reduced. Measures that
result in a smaller B include decreasing the contact rate of the host population (for example
through quarantine) or decreasing the probability of transmission during contact (for example
through mask-wearing). Mathematically, this means that the rate at which new cases are
initially created, reduces as well. Visually, this results in the flattening of the Infectious curve —

it isn’t as steep, as seen in figure 5.

1.0

0.6 0.8
| |

0.4

Line types
— 8
1

R

fraction of people

0.2

time(days)

Figure 5: Numerical simulation of an Influenza outbreak in R, over 30 days.
(based on Mahaffy, 2018). The initial conditions are S=0.999, I=0.001 and R=0.
Because Ry is just above 1, the Infectious curve is very flat with a maximum of
0.008 infected.

A host population is rarely fully susceptible, e.g., some individuals will be immune due to
prior infection or because of vaccination. This is where the effective reproduction number
R(E) comes into play. R(E) denotes the average number of secondary cases per infectious
individual in a non-fully susceptible population and can be approximated be multiplying the
basic reproduction number Rq with the fraction of susceptible in the host population; R(E)=
RoS (Baratt, Kirwan, & Shantikumar, 2009). If Ry > 1, as soon as R(E)=1, the disease

becomes endemic.

3.2 The Equilibrium states

If we want to explore what will eventually happen to a population after a pathogen is introduced,

we figure out when the system is at equilibrium, e.g., dS/dt = dl/dt = dR/dt = 0.

4 Ordinary differential equations or ODEs is are equations containing a function and its derivatives. It is
usually written in the form of y’=f(x,y) or dy/dx(x)=f(x(y(x)) (Wai, Choon, & Idris, 2021, p. 26).

14
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It is easy to discern the disease-free equilibrium. In this scenario, the disease has gone extinct,
and everyone is susceptible, namely (Sk, le, Re) = (1, 0, 0). ° (Keeling & Rohani, 2007, p. 28).
Establishing the endemic equilibrium, which occurs after the pathogen has run its course,
requires more effort. We start by setting the equation from system 3 for the infectives to zero

after factoring for I;

IBxS—(y+up)=0 5

This is satisfied whenever 1=0 or S= (y+u)/ B. The first condition is the disease-free equilibrium
and the second is the endemic equilibrium. If we solve eq. 5 for | using S= (y+u)/ B in eq. 3.1,
we get I= p/(y+u) - wW/P. Now utilizing Se+le+Re=1, we can get an expression for R.

The endemic equilibrium is therefore given by eq. 6.1-6.3;

_+_
gp=11F ﬂ“, (6.1)
= £ __2 (6.2)
Y+p B
Rp=1- 21K K LK (63

B Yy+u B

_+_
Sp = % (7.1)
p© 7
p=—H_ K (7.2)
T v+ B

YTtHp R L HE73)
B y+up B

The endemic equilibrium is biologically only feasible if Ro > 1 due to the universal condition on
the non-negativity of S, | and R and shows that in the SIR model with demography, if an
epidemic sweeps through a population, not all individuals become infected (Keeling & Rohani,
2007, p. 29). This does not imply however, that those who weren’t infected were immune.
Instead, this happens because new susceptible individuals are constantly being born into the
population (Ashcroft et al., 2020, p.32).

5 Sk, Ie, Re denote the S,I and R values at equilibrium.

15
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3.3 Stability Properties

Now that we know the conditions surrounding the equilibrium states, we want to find out the
likeliness of observing them. One can use mathematical stability analysis for each equilibrium
point (Keeling & Rohani, 2007, p. 30). When looking at the rates of change of the variables
when each variable is slightly shifted away from its equilibrium point, one can discern its
stability; if an equilibrium state is stable, it can withstand small perturbations, e.g., the rate of
change doesn’t “blow up”.

For our two equilibrium states, this yields (Keeling & Rohani, 2007, p. 29);

The endemic equilibrium is stable only if Ry > 1

The disease-free equilibrium is stable only if Ro < 1

This makes sense since a disease can only grow in the long term if each infected host passes
on the infection to more than one individual. If fewer secondary infections take place, the

pathogen doesn’t spread.

4 Extension of the basic SIR Model

4.1 The Sl Model - Lifelong infection

The Sl model distinguishes between two classes: susceptible and infected. Just like in the SIR
model, susceptible individuals become infected through disease transmission and move to the
infectious group. Both infected and susceptible hosts are lost through death. In the SI model,
a disease leaves the individual infected for the rest of their lives, this means they never recover.
This holds true for diseases such as herpes.We still assume S+I=1 and that the total population

size remains constant.

The Sl equations are presented in eq. 8.1 and 8.2;

dS

il pS — BSL,  (8.1)
dI

— = BSI — ul. (8.2)
3 =PI p

Deriving the basic reproduction number for the SI model yields Ro= B/u, since the infectious

period becomes 1/y, or life expectancy.

16
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The disease-free equilibrium is given by (Sg, Ie) = (1,0). The endemic equilibrium by eq. 9.1-

9.2;
1

Sg = R—[), (9.1)

1
Ig=1——. (9.2
p=1-g 02

Just like in the SIR model, not all susceptible individuals become infected at equilibrium. The

same stability properties from above hold.

=]

— Figure 6: Numerical simulation of
© | SI model herpes outbreak in R,

over 10°000 days for initial
e $=0.999, 1=0.001, and R=0 and

- 8
1

b p=0.0285 (based on Amalia S.

| Magaret, 2016)

0 2000 4000 6000 8000 10000

0.6
1

fraction of people
0.4

0.2

time(days)

4.2 The SEIR Model - Introducing a carrier state

The SEIR refines the SIR model by taking a latency period into consideration. After a
susceptible individua is infected, a period ensues during which the pathogen reproduces
rapidly. At this stage, the individual is infected, but not yet infectious (Keeling & Rohani, 2007,
p. 41). We introduce a new host class, E, which illustrates this infected but not infectious state,
and the latency period 1/c. We still assume S+E+|+R=1 and that the total population size

remains constant. The SEIR equations are presented in eq. 10.1-10.4;

% = p— (BL+ p)S, (10.1)
dE

— = ASI— (u+0)E, (10-2)
dI (10.3)
= _oE-— I

dR (10.4)
PN S -

x KR

The expression for Ro changes and becomes more complicated due to the death of some
individuals in the carrier class E. These individuals do not contribute to the growth of the
infected group. However, this effect is often negligible since the latency period is oftentimes

far smaller than life expectancy, so in the case where ¢ — o« we can say that Ro =p/ (y +n).

17
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The disease-free equilibrium is given by (Sg, Eg, Ig, Re) = (1,0,0,0). The endemic equilibrium is

given by eq. 11.1-11.4;

p+o (11.1)
Sp=£"7
E R()O' ’
p p
Ep = _ (11.2)
"7 U406  Reo’
_ A (M _ 1) (113)
B\u+o ’

Rg=1-Sg — Eg — Ig. (11.4)

e Figure 7: Numerical
Simulation of SEIR model
3 in R. The initial values are
2 S$=0.998, E=0.001, I=0.001
8 © | Line types
a ° — and R=0. The parameters
o
= 1 — = =
% pa 1 ~ R £=0.3,y=0,2, 4=0.001 and
£ ’\ N / T 0=0.1 were chosen by the
S |' ~ author. The graph shows
,\‘ oscillations due to the time
o | [ - - S
e T T T T T T delay between infection

time(days)
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5 Mathematical Methods

5.1 Runge-Kutta Methods

This chapter focuses on methods that derive a solution to the SIR equations outlined in the
previous chapters. Because of the complexities that arise in the 3 differential equations, it is
rather difficult to obtain explicit functions that predict the evolution of S, | and R using analytical
methods. Instead, one can use numerical integration (Keeling & Rohani, 2007, p. 25).
Numerical integration entails using an algorithm to approximate future values using initial
states and their slopes, stepwise. The Euler method is the easiest algorithm amongst a family
of numerical integrators, the so-called Runge-Kutta family of integrators, because it only uses
one function evaluation per step. Runge-Kutta methods are all “one-step methods”, which
means the approximation for the next point t + At is obtained by using information (slopes) only
from the previous point. Some RK methods use function-evaluation information at points
between t and t + At but discard this information after the approximation at t+At is derived
(Kong, Siauw, & Bayen, 2020). Standard software packages such as R offer solvers based on

Runge-Kutta algorithms to solve ordinary differential equations.

A Runge-Kutta method can be expressed generally as in eq. 12;

Ynt1 =Yn +h Z Yiki (12
i—1

where y, is the initial value, h the step size, yi coefficients depending on the specific RK method
and ki the slopes (Bogacki & Shapmine, 1989).

Some ODE solvers have embedded error estimation methods, which are used to adapt the
step size according to error tolerances and make the computation more efficient. The objective
of an adaptive step size method is to stay within some error constraint with minimum
computational effort (Wai, Choon, & Idris, 2021, p. 26). There are two RK adaptive step
methods the next sections see to analyze further; the Runge-Kutta-Fehlberg method (ode45

solver) and Bogacki- Shapmine method (ode23 solver).

19
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5.2 Fehlberg Method

The Fehlberg method includes a fourth order and fifth order formula and was developed by
Erwin Fehlberg in a 1969 NASA report (Fehlberg, 1969). It is implemented in R as the ode45
solver. The fourth order solution is used to further the solution, whereas the fifth order solution
is used for local error estimation. The Fehlberg formulas are defined in eq. 13 and 14;

i—1

Bi = hof(yn + Y Bishstn + 0ihn | i =1,--,6 (1)
=1
6
Yn+1 = Yn + Z ’Yiki (14)
=1

Where ai and Bi are coefficients given in figure 8, and h, is the time step (Zhang, 2015).

a; fz,' Vi Vi
16 25
0 3 216
1 1
i v 0 0
3 3 a G656 1408
8 32 3 2825
12 1932 — 7200 7206 28561 1408
13 2197 2197 2197 56430 2565
439 . 3680 845 9
1 216 -3 513 4104 50 5
1 _ 8 2 _ 3544 1859 _ 1 2 0
2 27 2565 1104 10 55

Figure 8: Coefficients of Fehlberg's formulas, y and »~ are the
weighted coefficients of the fifth and fourth order formulas (Hull,
Enright, Fellen, & Sedgwick, 1972).

oi indicates the intermediate step sizes that are taken; for both the fifth and fourth order
method, 4 of a full step is taken initially using the slope (k1) at the initial value yn. At this point,
3/8 of a full step is taken using the slope at t, + ¥4 hn. The taking of intermediate steps is iterated
6 times in total, until all slopes ki-ks are obtained. At the end, a linear combination of these 6
slopes is used to derive both a fifth and fourth order solution using weighted coefficients (last
two columns of table 1). The estimated local error is estimated using the difference of the fifth

and fourth order formulas.

Because Fehlberg’s method uses six function evaluations per step, there’s more work per step
then when using Euler's method, which has only one function evaluation per step. This work
does pay off, as the Fehlberg method is of higher accuracy than Euler's method. The Euler
method is very crude due to the local error scaling with h instead of a higher power. (Keeling
& Rohani, 2007, p. 25). This means that not as small of a step size must be chosen to achieve

a certain accuracy (Zeigler, Muzy, & Kofman, 2018).
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5.3 Bogacki-Shapmine Method

Just like Fehlberg’s method, the Bogacki-Shapmine method, implemented as the ode23
method in software such as MATLAB and R, uses intermediate steps before taking a full step
h to further a solution. The method was developed by Przemslaw Bogacki and Lawrence F.
Shapmine in a 1989 paper (Bogacki & Shapmine, 1989).The name ode23 indicates that two
formulas, one of order 2 and another of order 3 are involved. The 3" order method is used to
advance the solution, while the 2" order method is used for local error estimation of the second

order solution, which is used to adapt the step size to certain error constraints (Moler, 2014).

One step of the Bogacki-Shapmine method uses three stages per step but calculates 4 slopes.
This is because it employs a FSAL (first same as last) strategy; k1 is ks from the previous step
(Moler, 2014).

The four ks are given by Bogacki’s and Shapmine’s 1989 paper and are defined in eq. 15.1-
15.6.

1 1

k2 = f(tn + Ehnayn + Ehnkl)a (152)
k3 = f(tn + %hn,yn + %hnk2)a (153)
2 1 4 15.4
Yn+1l = Yn + ghnkl + ghnk? + §hnk3> ( )
ks = f(tn + hn, yn—i—l)a (15.5)

7 1 1 1
Zni1 = Yn + ﬁhnkl + ZhnkZ + ghnk3 + ghnk4- (15.6)

Above, eq. 15.6 is the second order approximation to the exact solution and eq. 15.4 the third
order approximation. Because the Bogacki-Shapmine method is of lower order than the
Fehlberg method, it is more suitable if only a crude approximation of the solution is sufficient
due to there being less work per step. Bogacki and Shapmine argued that their method
outperforms other third order methods because of the embedded order two method (Bogacki
& Shapmine, 1989)

5.4 Errors and Runge Kutta methods

The local truncation error is the difference between the computed result and the value of the
true solution through the previously computed result (Hull, Enright, Fellen, & Sedgwick, 1972).
Denoting the results produced by a method by (x1, y1), (X2, ¥2), (X3, y3)...and denoting the true
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solution of the differential equation through (xi.1, yi-1) by, (X, Xi1, yi1) the local error, ignoring

round-off errors, is given by lys-y(X, Xi.1, Yi.nl, as seen in figure 9.

computed result

Yi+
1 — local error

true solution
through

(Xi=12Yi-t)

|
i

Xj-2 Xj-1

1
|
|
|
|
|

|
|
|
|
|
|
|
|
X
Figure 9:Visual representation of the local truncation error
(Hull, Enright, Fellen, & Sedgwick, 1972).

Alongside the local error exists the global error, which describes the accumulation of errors. It
is defined as the difference between the computed solution and the real solution. (Shampine
& Watts, 1976). If the global error grows without bounds, e.g., the numerical solution rapidly

diverges from the true solution, the method is numerically unstable (Stull, 2020).

As we have seen, adaptive step methods have embedded formulas for estimating the
truncation error per step. When using software such as MATLAB or R, the user can specify an
absolute and relative error tolerance. The absolute error is introduced when the solution nears
zero. If the estimated local error exceeds the predetermined error tolerance, the step size is
decreased (Hull, Enright, Fellen, & Sedgwick, 1972).

The standard numerical methods introduced so far can be derived by taking finitely many terms
of a Taylor series®. The Euler method for example, corresponds to the first two terms of a
Taylor series. The terms that are omitted during this process constitute the truncation error,
and for many methods, the size of this truncation error depends on the step size h (Higham,
2002, S. 5).

The meaning of the term “order” when describing a numerical method, for example the
Fehlberg method being of order 4 or Euler method of order 1, describes the way in which the
global error behaves. A method being of order p is denoted using “big O notation”. One would
write egoba= O(hP). This means that the global error has the same growth rate as the function

h? (MIT, 2010).The local error on the other hand has an order of p+1. A proof of this is laid out

6 A Taylor series is a series that uses derivatives to obtain an estimate of a function.
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in Chapter II.3 of Solving Ordinary Differential Equation | (Hairer, Norsett, & Wanner, 2008).
The proof concludes that if the Runge Kutta method is of order p, then the local error admits

the rigorous bound defined in inequality 16;

lyi — y(zi, i1, 9:1)|| < ChPTE (16)

where C depends on the method and h is the time-step.

Other error-sources include round off errors (Higham, 2002, S. 5), which are caused due to
computers only being able to represent numbers by a limited number of binary bits (e.g., 32,
64, 128 bits). This means that precision is limited. Excel, for example has a precision for a

specified number confined to 15 significant figures.

5.5 Efficiency of Numerical Integration Methods

When it comes to numerical methods, one is primarily interested the efficiency of a solver. Two
terms, the theoretical and real efficiency number are defined to represent the efficiency of a

solver (Zhang, 2015).The theoretical efficiency number is given by eq, 17;

1
TEFN = (17)
FUNE x Erelative

where TFN is the theoretical efficiency number and FUNE is the number of function evaluations
of each solver and Eriative the relative error tolerance. TFN represents the computational efforts

required for a certain accuracy constraint.

The real efficiency number is defined in eq. 18;
1
RFN = — (18)
10® X TCPU X Eielative

where TPCU represents the actual computational time for the solver.

The higher the efficiency number, the more efficient the numerical method is at approximating

a solution.
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6 Combining Mathematics and Biology

6.1 Method

The questions chapter 6 seeks to answer practically are

¢ How do the parameters 3 and y affect the shape of the S, | and R curves? What does
this mean for health care systems/society?

¢ How big are the host groups S, | and R at equilibrium depending on Ro?

e Does the behavior of local errors of RK-methods coincide with O(h**')? Do local errors
decrease with lower step size?

¢ How does rounding-precision affect the shape of the curves and their accuracy?

¢ Are RK-methods with lesser function evaluations per step more efficient than ones with
a higher number of function evaluations? How do error constraints affect computational

cost?

To answer these questions, numerical experiments are conducted. Because of its user
friendliness, Excel is used as means simulating the SIR model. Because Excel doesn’t include
RK-methods embedded in its software, the formulas for each method must be inputted by
hand. The statistical Program R’s deSolve package, which specializes in solving ODEs using
numerical integration methods such as the RK-integrators is used as well. The reason R was
chosen, is its user friendliness for beginners and the simplicity of downloading R packages. To
better familiarize oneself with coding in R, the R archive CRAN offers up to date and easy to
understand manuals on R packages, which explain how functions used within the package are

set up.

To analyze the effects of parameter values on the disease dynamics, the R version 4.1.2 is
used. | hypothesize that an increase in the basic reproduction number will lead to a higher
number of infected at the peak of infection. The framework for the code used in implementing
the SIR model in R was derived from the deSolve package manual (Soetaert, Petzoldt, &
Setzer) and RPubs (Choisy, 2018), an open platform for publishing R documents and code.
Since the goal is to find out how different B and y values affect the curves, a for loop is used to
iterate the process of running the code once with B and another time with y ranging from 0.5 to
4, in intervals of 0.5 using the ode45 method with absolute and relative error bound of 108, for
higher accuracy. This means the model is simulated with Ro values under and above one. The
code for the for loop is derived from a blog post (Bolker, 2016). The results are then exported
to Excel for plotting and compared to theory. The max number of infected of one parameter

set is measured and compared to that of another set and inferences are made. Equilibria
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values are obtained using the rootSolve package in R and compared based on size. The code

for the equilibria values is derived from Epidemics-Models and Data using R (Bjornstad, 2018).

For the error analysis, Excel is used to implement the basic SIR model w/o demography using
the ode23 and Euler method and different step sizes. | hypothesize that a lower step size will
lead to a smaller local error. For the local error estimation of the ode23 method, both a second
and third order solution is obtained, and the absolute value of their difference is taken as the
error estimate for the second order solution. This is done for h=1 and h=0.5. The errors per
step for each h value are compared using error quotients and according to theory, should
behave according to the O(h**"), where p denotes the order of the method. For the Euler
method, local errors are estimated using a micro-time stepping technique; first, a solution using
h=1 is derived. Then, each value is used as an initial value for a solution using h=0.001. This
second solution is then compared to the first by taking the absolute value of the difference of
both solutions. After using the same micro-time stepping technique for a h=0.5 solution, the
local error estimates for h=1 and h=0.5 (local error is average of half-step errors) are compared

using error quotients.

The effect of rounding precision is investigated using Euler and ode23 implementations in
Excel. After each step, the solution is rounded to 2-, 3-, 7- or 15-digit precision and used for
the next step. Then, the solution for each precision-type over 10 days is plotted in the same
graph for easier comparison. Using this one can discern at which precision level the solution

stabilizes and make inferences.

To compare computational cost and efficiency of different RK-methods, the model is run in R
using relative and absolute error tolerances of 10,10, 10"° using the ode23, ode45 and 7™
order rk78f method with 8" order error estimate. The computational cost for each method is
obtained by running diagnostics and the computational time for each solver is acquired. |
hypothesize that the smaller the number of total function evaluations of a solver, the more
efficiently the solution is estimated. Using this information, both the theoretical and real
efficiency numbers outlined in chapter 5.4 are computed and compared for each solver. Using

these values, inferences based on the efficiency of the three RK-methods are made.
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7 Results

7.1 Changing Parameter Values

In this section, the results for the R simulations with changing parameter sets are presented.
First, results for Ro > 1, specifically p=0.5 and y=0.7 are shown. The effective reproduction
number is depicted using a secondary axis. The data sets pertaining to the graphs are found

in the appendix.

1.2
%) 0.7
S 1
= 0.6
>
3 0.8 0.5
& 06 0.4 =
S 04 03
O o
E 0.2
(N

0 0

0 5 10 15 20 25 30

time (days)
[ R R(E)

— S

Figure 10: Plot for =0.5 and y=0.7

Now, for figure 11 both 8 and y are increased so that Ry is just above 1, more specifically =3
and y=2.5
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Figure 11: Plot for /=3 and y=2.5
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Lastly, the plot for an extreme example for Ro=5 is shown in figure 12, where $=3.5 and y=0.7.
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Figure 12: Plot for =3.5 and y=0.7

7.2 Error Analysis and Rounding

Now, the local error estimates for the Excel ode23 and Euler implementation are presented
restricted to 10 days for B =0.3 and y=0.2 The simulations using both methods are found in the

appendix.

Table 1: Local error estimates and quotients for ode23 (2" order solution)

t(d) Local Local Quotients

error error

est. h=1 est. h=0.5

S | R S | R S | R
1 5.06E-07 @ 1.25E-07 @ 3.82E-07 @ 6.28E-08 1.52E-08 4.76E-08 | 8.07 8.22 8.02
2 5.20E-07 @ 1.23E-07 4.06E-07 6.54E-08 1.49E-08 5.05E-08 @ 8.08 8.26 8.03
3 5.48E-07 @ 1.18E-07 @ 4.29E-07 6.76E-08 1.42E-08 @ 5.34E-08 | 8.10 8.33 8.04
4 5.62E-07 1.11E-07 4.51E-07 6.92E-08 1.32E-08 5.61E-08 | 8.12 8.42 8.05
5 5.70E-07 A 9.91E-08 @ 4.71E-07 @ 7.01E-08 1.16E-08 5.85E-08 | 8.14 8.55 8.06
6 5.71E-07 @ 8.31E-08 @ 4.88E-07 @ 7.00E-08 9.46E-09 @ 6.05E-08 @ 8.17 8.79 8.07
7 5.63E-07 @ 6.21E-08 @ 5.01E-07 @ 6.87E-08 6.70E-09 | 6.20E-08 | 8.20 9.27 8.08
8 5.45E-07 @ 3.56E-08 @ 5.09E-07 6.62E-08 3.25E-09 6.29E-08 @ 8.24 110 8.10
9 5.15E-07 | 3.24E-09 @ 5.11E-07 6.21E-08 9.44E-10 6.30E-08 @ 8.29 3.43 8.2
10 4.71E-07 3.53E-08 5.06E-07 @ 5.63E-08 5.90E-09 6.22E-08 @ 8.36 598 8.14
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Table 2: Local error estimates and quotients for Euler

t(d) Local Local Quotients

error error est.

est. h=1 h=0.5

S | R S I R S | R
1 7.79E-04 4.57E-04 @ 3.21E-04 1.96E-04 1.15E-04 8.11E-05 3.97 3.97 3.96
2 9.87E-04 | 5.75E-04 4.12E-04 | 2.52E-04 1.47E-04 @ 1.06E-04 3.91 3.92 3.90
3 1.24E-03 7.15E-04 @ 5.25E-04 3.21E-04 1.84E-04 1.36E-04 3.86 3.87 3.85
4 1.54E-03 8.75E-04 6.66E-04 4.03E-04 2.28E-04 1.75E-04 3.83 3.84 3.80
5 1.89E-03 1.05E-03 | 8.36E-04 4.96E-04 2.74E-04 2.22E-04 3.80 3.83 3.76
6 2.27E-03  1.23E-03 1.04E-03 5.98E-04 & 3.20E-04 2.78E-04 3.79 3.84 3.74
7 2.66E-03 | 1.39E-03 1.28E-03 | 6.98E-04 3.56E-04 | 3.43E-04 @ 3.81 3.90 3.72
8 3.02E-03 1.49E-03 1.54E-03 7.84E-04 3.71E-04 4.13E-04 3.86 4.01 3.73
9 3.30E-03 ' 1.48E-03 @ 1.81E-03 & 8.33E-04 3.50E-04 4.83E-04 3.96 423 3.75
10 3.39E-03 1.32E-03 2.08E-03 8.24E-04 2.79E-04 5.45E-04 4.12 4.73 3.81

The quotients for both the ode23 and Euler method are illustrated graphically in figure 13-15
and pertain to the original simulation over 30 days.
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Figure 14: A and B show the plots of the error quotients for the Euler and ode23 solution for S.
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Figure 13: A and B show the plots of the error quotients for the Euler and ode23 solution for 1.
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Figure 15: A and B show the plots of the error quotients for the Euler and ode23 solution for R.

Now, the results for the experiments regarding precision are shown in figures 16-18. The
simulation was run for both the Euler and ode23 solver to 15-, 7-, 3- and 2-digit precision for
B =0.3 and y=0.2, restricted to the first 10 days.
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Figure 17: A and B show ode23 and Euler S-curve solutions with different precision levels.
/ ode23 | Euler
0.05 0.015
0.04
0.01 ®
0.03 °
[
0.02 0.005 °
’ s 8 8 s 8 °
001 o © 8 8 e 0o 0 0 o o ®
o 0 8 000 0 0 0 o
0 0 o900 0 06 0 0 0 ©
0 5 10 0 4 6 8 10

@ 15 digit precision @ 7 digit precision B o B o
@ 15 digit precision @ 7 digit precision

© 3 digit precision @2 digit precision ® 3 digit precision @ 2 digit precision

A B

Figure 16: A and B show ode23 and Euler I-curve solutions with different precision levels.
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Figure 18: A and B show ode23 and Euler R-curve solutions with different precision levels.

7.3 Efficiency Numbers

In this section, the efficiency and reliability numbers are presented using computational cost
and time for the ode23, ode45 and rk78f solutions of the basic SIR model without demography
over 30 days with 8 =0.3 and y=0.2 First, the computational values for the error restraint of

10" are presented in table 3.

Table 3: a)-c) pertain to the diagnostics for relative and absolute error tolerances set to 107

a) ode23
number of steps 30
number of function evaluations 92
number of error test failures 0
computational time (s) 0.001822
TFN 1.09E+01
RFN 5.49E+01

b) ode45
number of steps 30
number of function evaluations 182
number of error test failure 0
computational time (s) 0.004927874
TFN 5.49E+00
RFN 2.03E+01

30
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c) rk78f
number of steps
number of function evaluations
number of error test failures
computational time (s)
TFN
RFN

Now results for an error tolerance of 10 are presented in table 4.

Matura Project

December 2022

30

391

0
0.00824285
2.56E+00
1.21+01

Table 4: a)-c) pertain to the diagnostics for relative and absolute error tolerances set to 10°°

a) ode23
number of steps
number of function evaluations
number of error test failures
computational time (s)
TFN
RFN

b) ode45
number of steps
number of function evaluations
number of error test failures
computational time (s)
TFN
RFN

c) rk78f
number of steps
number of function evaluations
number of error test failures
computational time (s)
TFN
RFN

31

135

446

39
0.0214808
2.24E+03
4.66E+03

30

182

0
0.004426003
5.49E+03
2.26E+04

30

391

0
0.008924961
2.56E+03
1.12E+04
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Lastly, the results for an error constraint of 107"° are presented in table 5.

Matura Project

December 2022

Table 5: a)-c) pertain to the diagnostics for relative and absolute error tolerances set to 107"°

a) ode23
number of steps
number of function evaluations
number of error test failures
computational time
TFN
RFN

b) ode45
number of steps
number of function evaluations
number of error test failures
computational time (s)
TFN
RFN

c) rk78f
number of steps
number of function evaluations
number of error test failures
computational time (s)
TFN
RFN

32

1514
4654

110
0.0749811
2.15E+06
1.33E+07

82

496

2
0.01651287
2.02E+07
6.06E+07

30

391

0
0.008145094
2.56E+07
1.23E+08
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8 Discussion

8.1 The Effect of Changing Parametrization

When one compares figures 10-12, the way the infectious curve emerges and grows as the
parameter values change becomes notable. In figure 10, all curves are stagnant. This is due
to the transmission rate being smaller than the recovery rate (0.5 < 0.7); more people leave
the infectious class on average per time than enter. This leads to the infection not being able
to proliferate, as seen by the flat infectious curve. Consequentially, the disease-free equilibrium
is stable (Ro=0.7). Comparing the equilibrium values of all three host classes to the theory laid

out in chapter 3.2, we can see that they approximately coincide with (Sg, le, Re) = (1, 0, 0).

For figure 11, the curves show a slight change in curvature. Over the first 10 days, roughly 1/5
of the population made up of 1000 individuals leave the susceptible class and move to the
infectious class, while a little more than 1/10 of the populace enter the recovered compartment.
The maximum number of infected is reached after 8 days at roughly 0.015 (relative value)
infected. The small amount of infected at the disease’s height is due to the transmission rate
being just above the recovery rate and therefore R, being larger but close to 1 (Ro=1.2). The
effective reproduction number at the turnover point (maximal value of infected) is
approximately 1, which coincides with the theory laid out in chapter 3.2; the infection
proliferates until R(E)=1, dying down to 0 and becoming endemic. Because Rq > 1, the endemic
equilibrium is stable and shows that the infection dies out because of the exhaustion of the

infectious class, and not due to there not being any susceptible left.

Figure 12 shows an extreme example where Ro=5. This means the disease spreads rapidly,
which is reflected in the maximum of infected at a little less than half the population infected
being reached after only 3 days. This confirms the hypothesis that a higher Ro leads to a higher
maximal number of infected. Because the basic reproduction number is so high, virtually all
susceptible become infected, as can be seen in the number of susceptible at the stable
endemic equilibrium. After reaching its height (R(E)=1), the infectious curve dies down to 0, at
which point approximately the total population is comprised of recovered individuals. It is also
noteworthy that for each simulation, the total population is conservative, as described in the
theory. This indicates that the errors from the simulation are well under control, as the total

population always stays at 1.

As seen in figures 10-12, the larger the basic reproduction number, the faster the disease

proliferates and the higher the maximal amount of infected. This has substantial implications
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for healthcare systems; If the spread of a disease isn’t mitigated, the rapid nature of its spread
can overwhelm health infrastructure and cause a shortage in supplies such as hospital beds
or protective gear. To prevent or mitigate this, disease-prevention strategies such as
quarantine, handwashing, mask-wearing, social distancing, medicine, and vaccination
campaigns are employed. The effect of these measures is a flattening of the curve as either
the recovery rate is increased so that it is larger than the transmission rate, or the transmission
rate is decreased so that it becomes smaller than the recovery rate, in both cases effectively

decreasing Ry so that it is under 1.

8.2 Error Analysis and the Effect of Rounding

Looking at tables 1 and 2, a clear trend shows itself, the smaller the chosen time step h, the
smaller the local error and. This validates my hypothesis laid out earlier, that a smaller h leads
to a smaller local error estimate. Quantifying the rate at which the local error decreases is laid
out theoretically in chapter 5.2; for the Euler method, the local error scales with h? (first order
method) and for the ode23 method with h® (second order method). This means that a halving
of the timestep h=1 would lead to the local error decreasing by factor of 4 for Euler's method,
and by a factor of 8 for the ode23 method. Comparing this to the error quotients in tables 4
and 5, we can see that this is true. For the ode23 method, the error quotient fluctuates, with
some odd spikes which this paper will not delve into further, around 8 and for the Euler method

around 4, as is seen in figures 13-15.

Focusing on figures 16-18, it becomes clear that the ode23 solution demonstrates a “stability
region” for precision; a precision of 3 digits and larger approximately yields the same solution
(7-digit precision solution covers 15-digit precision solution), whereas a 2-digit precision yields
a stagnant solution which diverges from the real solution, making it less accurate. The Euler
method demonstrates a similar, but smaller, stability region; a precision of 4 digits and larger
approximately yield the same solution. This tells us that the Euler method isn’t as “resistant” to
low precision as the ode23 method. | suspect this is due to the ode23 solution showing a faster
initial decrease in susceptible and increase in infected and recovered. If the precision is within
the stability regions, precision has a negligible effect on accuracy. Because the global error
contains the local error and other errors such as ones due to precision, one can heuristically
say that if the local errors do not propagate and the precision is within the stability region the

global error doesn’t propagate unboundedly either, e.g., the solution is numerically stable.
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8.3 Analysis of Efficiency numbers

When it comes to computational cost, tables 3 tell us that for a solution with a relative and
absolute error tolerance of 107 all three solutions yield the same amount of steps, but focusing
on function evaluations the ode23 method shows the smallest value. This is because
compared to the fourth order ode45 and seventh order rk78f method it only has 3 function
evaluations per step, which is reflected in there being roughly 3 times the amount of total
function evaluations than steps. The ode45 and rk78f method have 6 and 13 function

evaluations per step respectively.

Focusing on computational time, the ode23 solution took the least amount of time to compute
at approximately 0.0018s, whereas the other two solutions took more than double that. This
can be explained using the total number of function evaluations per method; the higher the
order, the more function evaluations per step and the longer it takes to approximate solutions
of crude error tolerance. The number of error test failures being 0 for all three methods is
noteworthy; this is most likely due to the low error tolerance of 103, and the “right” step size,

which isn’t very small, being chosen at the start of each step.

When it comes to the TFN and RFN values, we can see that the ode23 method ranks first in
both categories, meaning that for a crude error tolerance, a low order method is the most

efficient.

Moving on to table 4, the lower error tolerance of 10° had the effect of increasing the
computational time for the ode23 solver but keeping it roughly the same for the ode45 and
rk78f method, the ode45 method being the fastest of all three. For both ode45 and rk78f, the
number of steps and function evaluations didn’t change, whereas for the ode23 method they
increased to 135 and 446 respectively. This is due to higher order methods being able to stay
within lower error tolerances without needing to compromise computational cost. It is also
noteworthy that the ode23 method produced the most error test failures, probably due to the

same reason. The other two methods produce 0.

Comparing the TFN and RFN of each method, the ode45 method is the most efficient at
estimating the solution. The ode23 method comes in last place for both metrics and the rk78f
method in second. This is because the ode45 solution produced both the smallest

computational time and number of function evaluations.
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When looking at the results for an absolute/relative error tolerance of and 107°, we can see
that for high accuracy constraints, the rk78f method is the most efficient, the ode45 method

coming in second and ode23 method in last place.

The computational cost (number of steps and function evaluations) did not change for the rk78f
method, whereas for the ode23 and ode45 method it increased, the former more drastically
than the latter (approximately factor of 10 vs. factor of 3). This can be explained by the ode45
method being of one order higher than the ode23 method and this having the effect of the
ode45 method being able fulfill the same error tolerance with a larger step size. It is noteworthy
that for all error constraints, the computational time for the 7" order method stayed virtually the
same, which is due to the computational cost also staying the same. This means that the higher
the order, the less computational cost needs to grow for higher accuracy constraints. The
number error test failures increased approximately by a factor of 3 for the ode23 method and
rose from O to 2 for the ode45 method. The number of error test failures stayed at O for the
rk78f solution.

Methods with a low number of function evaluations per step do not always behave most
efficiently, as the number of function evaluations per step is proportional to order, which
increases with the accuracy of a method. This has the effect of low order methods needing to
take very small steps to stay withing predetermined accuracy constraints and thus increasing
the total amount of function evaluations (more computational cost) and computational time,
leading to lower efficiency. For crude error tolerances however, low order methods, such as
the ode23 method, proved most efficient. In each example, the method with least amount of
total function evaluations proved most efficient in terms of TFN and RFN, thus proving my
hypothesis. This is due to computational time decreasing with a lower total number of function

evaluations and this quotient of these two values being used for the efficiency numbers.
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9 Conclusion

We gave an answer to how the model parameters affect the S, | and R curves; the parameters
B and y affect the disease dynamics by either flattening the infectious curve and thus leading
to a less rapid decrease in susceptible or a heightening of its spread. According to theory, the
basic reproduction number depends on the parameters and indicates how fast a disease
proliferates. If Ro<1, the equilibrium values are low, if Ro>1, almost all the susceptible become
infected. My hypothesis that a larger basic reproduction number leads to a higher maximal
number infected was confirmed. The way in which R, affects the equilibrium became clear; if
the basic reproduction number is high, virtually everyone becomes infected and the population
at endemic equilibrium will be compromised of recovered individuals. If it is under 1, the
disease cannot spread, and the endemic equilibrium is stable. How this affects healthcare
systems and society was laid out; the higher Ro, the higher the threat of the healthcare system

being overwhelmed. Ry can be decreased using disease prevention and mitigation strategies.

We have seen that the local errors of the Euler and ode23 method do scale with O(h*"), which
means that a smaller step size leads to a smaller local error. This answers the question of
whether error size decreases with step size and confirms my hypothesis. Both methods yield
similar precision stability regions; the ode23 method yielded approximately the same solution
for 3-digit precision and higher, while the Euler solution stayed the same for 4-digit precision
and higher. For the ode23 method, intermediately rounding the solution to 2-digits meant that
all 3 curves remained stagnant. The same thing happened for the Euler solution for a 3-digit
precision and lower. If the precision is within the established stability regions, the global error
can be controlled, at least heuristically, using the local error as the error due to rounding is
small. This gives us insight into how precision affects the accuracy and shape of the solution

curves.

Regarding efficiency, the ode23 method proved most efficient in terms of both theoretical and
real efficiency and demonstrated least amount of total function evaluations and shortest
computational time for a relative and absolute error constraint of 10°. The ode45 method
proved most efficient for an absolute and relative error constraint of 10, and the rk78f method
for a low error tolerance of 107'°. This means that methods with a lower number of function
evaluations per step aren’t necessarily more efficient, it depends on how crude or precise the
desired accuracy is. If a low accuracy is sufficient, lower order methods yield highest efficiency
and least computational cost. The opposite holds for high accuracy constraints. This gives an
answer to whether methods with a low number of function evaluations per step are more

efficient. For each example, the method with the smallest number of total function evaluations
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proved the most efficient, confirming my hypothesis. The efficiency experiments showed that
the error constraint affects the computational cost of low order methods more than for higher
order methods. For low order methods, a moderately higher accuracy constraint increases the
computational cost, whereas for high order methods it stays the same, which gives us an

answer to how error constraints affect computational cost.

As an extension to the research outlined in this paper, focus could be shifted to implicit
numerical methods, such as the backwards Euler method, regarding accuracy, since certain
problems, especially numerical unstable ones, are better suited for such methods. The
experiments conducted in this paper could be executed using the SIR model with demography
to analyze how birth and death rates effect the dynamics of the curves. One could also study
the dynamics for mortality inducing diseases using a more complex SIR model that takes a
changing population size into consideration. The odd spikes that occur for the local errors of

the second order ode23 and Euler solution could be investigated in depth.

10 Reflection

All in all, the writing of this project was a very positive experience for me. | was able to
intensively research a topic | am deeply interested in, whilst collaborating with my math teacher
Mr. Preu, whose help and guidance | very much appreciated. Some aspects, such as the usage
of R as a novice or the tedious manual implementation of Runge-Kutta formulas in Excel

proved challenging, but | am grateful for the insight it gave me into epidemiological modelling.
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15 Work Journal

October of 2021  1st introduction to topic via Mr. Preu.

November 2021 - Preliminary research, gathering of information regarding SIR models
January 2022 and potential implementation.

January First time trying R, specifically implementing basic SIR model (setting
of initial values, SIR equations, paramteter values). This constituted
preliminary experimenting.

Febuary Research into numerical integration methods such as Euler using
material provided by Mr. Preu.

March- April Research into implementing RK-methods in R for SIR model and
different types of SIR models (with and without vital dynamics).

May 18th 1st meeting with Mr. Preu setting down goals of the paper and
implementation methods of the SIR model (R and Excel) and filling out
of contract.

May 25th Signing of contract

June 8th Meeting with Mr. Preu; Mr. Preu and | discussed potential questions
for my meeting with Prof. Kuoyos on the 14th of June, and agreed on
formulating most of the questions in a more general matter, only going
into specifics if necessary.We also looked at ETH lecture notes
provided by Prof. Stadler regarding infectious disease dynamics, and
discussed integration of a logistic differential equation regarding an
analytical solution to the SI model, and agreed that | will not be
employing such analytical methods, as they are beyond my scope. |
will be using numerical integration methods instead.

Mr. Preu provided me with a book on Modeling infectious diseases
written by Matt J. Keeling and Pejman Rohani, which will help me in
gathering real life data and their associated graphs, which | can
directly download.We agreed to meet again on June 16th 2022.

June 14th Meeting with Prof. Kuyos; | was able to meet with Professor Kuyos
who leads a Kohort on HIV research. He was not only able to convey
useful tips when modelling infectious diseases (such as structuring
your differential equations according to the disease or making me
aware of the fact that the euler method tend to become downwards
unstable when | converges to 0) but also reccomend a book on
infectious disease modelling in R. | asked him questions regarding
what to look out for when modelling dieseases, stochastic models,
error mitigation and data gathering. He was able to grant me insight
into the disease modelling process by explaining to me the programs
he uses to run simulations (R and C++) and parameter "fitting", a
process in which he compares real life data points to his simulation in
order to discern the values of the model parameters.

June 16th Meeting with Mr. Preu; We discussed the meeting with Prof. Kuyos
and | explained the various pieces of information he was able to
convey. | also showed Mr. Preu some pages of the book he
recommended to me. He asked me what | envisioned my next steps to
be regarding my project, and we agreed that | would start by
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simulating the basic SIR model in Excel and R and playing around
with timestepping values, rounding and parameter values (will be
using parameter values from real life data if possible), and including
the basic and effective reproduction number in my simulation and
endemic equilibria calculations.

July 6th

Meeting with Mr. Preu; We discussed potential ways to implement
error estimations in my project. We agreed that I'd try to implement the
ode23 method in Excel, export the yielded data into R and use it as
initial values in the ode45 method and calculate the error by
comparing my Excel ode23 solution with the R ode45 solution at
certain time steps. We looked at local errors with the help of two
papers (technical data report on numerical integration methods
published by MIT and SIAM paper). The former paper included a
formula used to estimate the efficiency of a numerical integration
method.

July 7th

1st time implementation of ode 23 method in Excel

August 1st

Creation of preliminary table of contents in order to be more efficent
when drafting content of paper

August 7th

Running Simulation basic SIR model in R; | first experimented with
parameter values(B ranging from 0.5 to 4 and y=0.7 and y ranging
from 0.5 to 4 and 3 =3) using a for-loop and the ode45 numerical
integration method, plotting the output subsequently. | then saved the
output into an Excel document for easier access.

August 8th

Implementing ode 23 and estimating error using difference of third
order and second order method in Excel as an alternative to proposed
method because of failure to do so in R. Simulating herpes using Sl
model and simulating SEIR model, and SIR model icluding vital
dynamics in R. Implementation of ode23, ode45, rk78f in R in order to
find out the number of steps needed depending on error tolerance so
that | can calculate efficiency numbers in the future.

August 9th

Drafting of preliminary introduction

August 23rd

Meeting with Mr Preu; We discussed my preliminary table of contents
and he suggested | seperate the section concerning mathematical
methods from the more biological/epidemiological theory sections and
made minor changes regarding languege. We also briefly spoke about
APA-style citing and decided that the paper would adhere to it. | asked
him a question regarding my ode23 Excel implementation, because |
realized that my local truncation error estimations do not behave in
the way that its respective big O notation describes it should.

August 29th

Drafting of Preamble

August 30th

Implementing the Euler method in Excel, local error stimation using
timestepping, validation of O(h?) order of the euler method by
calculating error quotients for h=1 and h=0.5

September 5th

Drafting of first part of theory pertaining to types of diseases

September 11th

Drafting of theory part regarding deterministic disease modelling and
the SIR differential equations. Writing about how the parameters are
defined and the transmission term is derived and why one
distinguishes between frequency and density dependent transmission.
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September 19th  Impromptu meeting with Preu. We looked over the Excel sheets.

October 2nd Drafting of theory part regarding the basic reproduction number and
extensions of the SIR model (SEIR and Sl). Writing about derivation of
Ro for the different models.

October 10th Correction of ode23 Excel implementation due to typing mistakes in
formula, yielding of correct O(h®) order by calculating error quotients
for h=1, h=0.5 and h=0.25

October 18th Writing of thery part concerning mathematical methods, specifically
explaining the Runge Kutta methods (Fehlberg and Bogacki-
Shapmine). Explanation of methods used to measure efficiency and
reliability of a method. Explanation of error behaviour and order of a

method.
October 20th Drafiting of method chapter
October 21st Compiling of graphs and tables used in results chapter, Analysis of

findings and drafting of conclusion

October 22nd Drafting of abstract

Novemver 6th- Editing and formatting of project
December 8th

December 12th Handing in of project
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Appendix |

R-code

library(deSolve)

require(rootSolve)

library(rio)

SIR <- function(time,state,parameters) {
with(as.list(c(state,parameters)),{

December 2022

parms=c( =B veclk], y=0.7), method=rkMethod("ode45"), rtol=1e-8, atol=1e-

equil2=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c( = 1,

equil4=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(p = 2,

equilé=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(p = 3,

equil8=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(p = 4,

ds <- - *S*

dl <- B *S*I-y*l

dR <-y*l

return(list(c(dS,dl,dR)))

H
}

init <- ¢(S=0.999, 1=0.001, R=0)

times <- seq(0,30,by=1)

B vec <- seq(0.5,4,by=0.5)

res<- vector(length(p vec),mode="list")

library(deSolve)

for (k in seq_along(p vec)){

res[[K]] <- rk(y=init,times=times,func=SIR,
8)
}

export(res, "parameter_runs_with_3 _changing.xlsx")

equil1=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(f3 =
0.5, y=0.7))
y=0.7))

equil3=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(f3 =
1.5, y=0.7))
y=0.7))

equil5=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(f3 =
2.5,y=0.7))
y=0.7))

equil7=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(f3 =
3.5, y=0.7))
y=0.7))

yvec <- seq(0.5,4, by=0.5)
res2 <- vector(length(yvec),mode="list")
for (k in seq_along(yvec))
res2[[k]] <- rk(y=init,times=times,func=SIR,

parms=c(B =3, y=yvec[k]),method=rkMethod("ode45"), rtol=1e-8, atol=1e-8)
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export(res2, "parameter_runs_with_y_changing.xlsx")

equil9=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(p = 3,
y=0.5))

equil10=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(f3 =
3,v=1))

equil11=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(f3 =
3,y=1.5))

equil12=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(f3 =
3,v=2))

equil13=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(f3 =
3,y=2.5))

equil14=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(f3 =
3,v=3))

equil15=runsteady(y=c(S=0.999, 1=0.001, R=0), times = ¢(0,30), func= SIR, parms=c(f3 =
3,y=3.5))

#Using ode23 and error tolerances to simulate model, with measuring of

computational time

start1 <- Sys.time()

SIR1_rk23 <- ode(y=c(S=0.999, 1=0.001, R=0), times=times, func=SIR, parms=c(p =0.5,
y=0.2), method=rkMethod("ode23"), rtol = 1e-3, atol = 1e-3)

end1 <- Sys.time()

time1 <- end1 - start1

time1

start2 <- Sys.time()

SIR2_rk23 <- ode(y=c(S=0.999, 1=0.001, R=0), times=times, func=SIR, parms=c(p =0.5,
y=0.2), method=rkMethod("ode23"), rtol = 1e-6, atol = 1e-6)

end2 <- Sys.time()

time2 <- end2 - start2

time2

start3 <- Sys.time()

SIR3_rk23 <- ode(y=c(S=0.999, 1=0.001, R=0), times=times, func=SIR, parms=c(p =0.5,
y=0.2), method=rkMethod("ode23"), rtol = 1e-10, atol = 1e-10)

end3<- Sys.time()

time3 <- end3 - start3

time3

diagnostics.deSolve(SIR1_rk23)
diagnostics.deSolve(SIR2_rk23)
diagnostics.deSolve(SIR3_rk23)

start4 <- Sys.time()

SIR1_rk45 <-ode(y=c(S=0.999, 1=0.001, R=0), times=times, func=SIR, parms=c(p =0.5,
y=0.2), method=rkMethod("ode45"), rtol = 1e-3, atol = 1e-3)

end4 <- Sys.time()

time4 <- end4 - start4

time4

start5 <- Sys.time()

SIR2_rk45 <-ode(y=c(S=0.999, 1=0.001, R=0), times=times, func=SIR, parms=c(f =0.5,
y=0.2), method=rkMethod("ode45"), rtol = 1e-6, atol = 1e-6)
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end5 <- Sys.time()
time5 <- end>5 - start5
timeb

start6 <- Sys.time()

SIR3_rk45 <-ode(y=c(S=0.999, 1=0.001, R=0), times=times, func=SIR, parms=c(p =0.5,
y=0.2), method=rkMethod("ode45"), rtol = 1e-10, atol = 1e-10)

end6 <- Sys.time()

time6 <- end6 - start6

time6

diagnostics.deSolve(SIR1_rk45)
diagnostics.deSolve(SIR2_rk45)
diagnostics.deSolve(SIR3_rk45)

start8 <- Sys.time()

SIR4_rk78f1 <- ode(y=c(S=0.999, 1=0.001, R=0), times=times, func=SIR, parms=c(p =0.5,
y=0.2), method=rkMethod("rk78f"), rtol = 1e-3, atol = 1e-3)

end8 <- Sys.time()

time8 <- end8 - start8

time8

start8 <- Sys.time()

SIR4_rk78f2 <- ode(y=c(S=0.999, 1=0.001, R=0), times=times, func=SIR, parms=c(p =0.5,
y=0.2), method=rkMethod("rk78f"), rtol = 1e-6, atol = 1e-6)

end8 <- Sys.time()

time8 <- end8 - start8

time8

start9<- Sys.time()

SIR4_rk78f3 <- ode(y=c(S=0.999, 1=0.001, R=0), times=times, func=SIR, parms=c(p =0.5,
y=0.2), method=rkMethod("rk78f"), rtol = 1e-10, atol = 1e-10)

end9 <- Sys.time()

time9 <- end9 - start9

time9

diagnostics.deSolve(SIR4_rk78f1)
diagnostics.deSolve(SIR4_rk78f2)
diagnostics.deSolve(SIR4_rk78f3)

S| <- function(time,state,parameters) {
with(as.list(c(state,parameters)),{
dS <- -B *I*S+mu-S*mu
dl <- B *I*S-mu*l
return(list(c(dS,dl)))
1
}

SI_model <- ode(y=c(S=0.999, 1=0.001), parms=c(mu=0.001, B =0.0023), func=SI,
method=rkMethod("ode45"), rtol=1e-10, atol=1e-10, times = seq(0,1000,by=100))

S|_model <- as.data.frame(SI_model)
with(SI_model {
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plot(time, S, type="I", col="blue", xlab="time(days)", ylab="fraction of people", ylim=c(0,1))
lines(time, I, col="green")

1)

legend("right", legend=c("S", "I"),

col=c("blue", "green"), Ity=1, cex=0.8,
titte="Line types", text.font=4, bg='"lightblue')

SEIR <- function(time,state,parameters) {

with(as.list(c(state,parameters)),{
dS <- - *S*I+ mu - mu*S
dE <- B *S*I - mu*E - sigma*E
dl <- -y*I - mu*l+sigma*E
dR <- y*I - mu*R
return(list(c(dS,dE,dl,dR)))

}})

SEIR_model <- ode(y=c(S=0.998, E=0.001, I=0.001, R=0 ), parms=c(mu=0.001, 3 =0.3,
y=0.2, sigma=0.1), func=SEIR, method=rkMethod("ode45"), rtol=1e-10, atol=1e-10, times =
seq(0,10000,by=100))

SEIR <- as.data.frame(SEIR_model)

with(SEIR {

plot(time, S, type="I", col="blue", xlab="time(days)", ylab="fraction of people", ylim=c(0,1))
lines(time, E, col="magenta")
lines(time, I, col="green")
lines(time, R, col="red")
1)
legend("right", legend=c("S", "E", "I", "R"),
col=c("blue", "purple”, "green", "red"), Ity=1, cex=0.8,
titte="Line types", text.font=4, bg='"lightblue')
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Data Parameter Experiments

Below is the compiled data of the experiments with changing parametrization in R, starting
with changing transmission rates.

p=0.5,y=0.5
time (days) S | R R(E)
0 0.999 0.001 0 0.71428571
1 0.99854751 0.000818226 0.00063427 0.71324822
2 0.99817746 0.000669356 0.00115318 0.7129839
3 0.99787486 0.000547481 0.00157765 0.71276776
4 0.99762745 0.000447735 0.00192481 0.71259104
5 0.99742517 0.00036612 0.00220871 0.71244655
6 0.9972598 0.000299356 0.00244084 0.71232843
7 0.99712461 0.000244747 0.00263064 0.71223187
8 0.9970141 0.000200089 0.00278581 0.71215293
9 0.99692377 0.000163571 0.00291266 0.71208841
10 0.99684993 0.000133712 0.00301636 0.71203566
11 0.99678957 0.0001093 0.00310113 0.71199255
12 0.99674024 8.93426E-05 0.00317042 0.71195732
13 0.99669992 7.30277E-05 0.00322705 0.71192851
14 0.99666696 5.96909E-05 0.00327335 0.71190497
15 0.99664002 4.87891E-05 0.00331119 0.71188573
16 0.996618 3.98778E-05 0.00334212 0.71187
17 0.99660001 3.25939E-05 0.0033674 0.71185715
18 0.9965853 2.66402E-05 0.00338806 0.71184664
19 0.99657328 2.17739E-05 0.00340495 0.71183806
20 0.99656345 1.77964E-05 0.00341875 0.71183104
21 0.99655542 1.45454E-05 0.00343003 0.7118253
22 0.99654886 1.18882E-05 0.00343925 0.71182061
23 0.9965435 9.71648E-06 0.00344679 0.71181678
24 0.99653911 7.94144E-06 0.00345295 0.71181365
25 0.99653553 6.49065E-06 0.00345798 0.71181109
26 0.9965326 5.30489E-06 0.0034621 0.711809
27 0.99653021 4.33575E-06 0.00346546 0.71180729
28 0.99652825 3.54366E-06 0.00346821 0.71180589
29 0.99652665 2.89627E-06 0.00347045 0.71180475
30 0.99652534 2.36715E-06 0.00347229 0.71180382
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p=1,y=0.7
time (days) S | R R(E)
0 0.999 0.001 0 1.42857143
1 0.99783648 0.00134776 0.00081575 1.42548069
2 0.99627154 0.00181401 0.00191445 1.42324506
3 0.99417101 0.00243711 0.00339188 1.4202443
4 0.99135936 0.00326626 0.00537438 1.41622766
5 0.98760971 0.00436326 0.00802703 1.41087102
6 0.98263361 0.00580347 0.01156292 1.4037623
7 0.97607263 0.00767493 0.01625245 1.39438947
8 0.9674954 0.01007372 0.02243087 1.38213629
9 0.95640584 0.01309345 0.0305007 1.36629406
10 0.94227044 0.01680584 0.04092372 1.34610062
11 0.92457304 0.02123105 0.05419591 1.32081863
12 0.90290234 0.02629939 0.07079827 1.28986048
13 0.87706676 0.03181307 0.09112017 1.25295251
14 0.84721457 0.03742488 0.11536055 1.21030653
15 0.81391806 0.04265538 0.14342656 1.16274008
16 0.77817507 0.04696265 0.17486228 1.11167867
17 0.74130183 0.04985533 0.20884284 1.05900261
18 0.70473539 0.05101194 0.24425267 1.00676484
19 0.66980764 0.05035741 0.27983495 0.95686805
20 0.63756441 0.04806596 0.31436964 0.91080629
21 0.6086758 0.0444959 0.3468283 0.86953686
22 0.58344006 0.0400908 0.37646914 0.83348579
23 0.56185088 0.03528631 0.40286281 0.80264411
24 0.54369016 0.03044716 0.42586268 0.77670022
25 0.52861684 0.02583952 0.44554364 0.75516692
26 0.5162373 0.02163093 0.46213177 0.73748185
27 0.50615353 0.01790616 0.47594031 0.72307648
28 0.49799234 0.0146886 0.48731905 0.71141763
29 0.49142004 0.01196108 0.49661887 0.70202863
30 0.4861478 0.00968274 0.50416946 0.69449685
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p=1.5,y=0.7
time (days) S | R RO(E)
0 0.999 0.001 0 2.14285714
1 0.99671027 0.00221889 0.00107084 2.13580772
2 0.99166155 0.00489776 0.00344069 2.12498903
3 0.98067081 0.01068748 0.0086417 2.10143745
4 0.95739468 0.02275376 0.01985156 2.05156002
5 0.91083574 0.0460479 0.04311636 1.95179086
6 0.82737354 0.08466049 0.08796597 1.7729433
7 0.70286554 0.13305951 0.16407495 1.50614044
8 0.55820336 0.17018197 0.27161467 1.19615007
9 0.42858271 0.17649081 0.39492649 0.91839151
10 0.33349543 0.15451262 0.51199195 0.71463307
11 0.27122814 0.12033444 0.60843742 0.58120316
12 0.23231193 0.08697363 0.68071444 0.49781127
13 0.20825428 0.06001474 0.73173099 0.44625916
14 0.19333313 0.04024153 0.76642533 0.41428529
15 0.18401397 0.02650592 0.78948011 0.39431565
16 0.17815499 0.0172646 0.80458041 0.38176069
17 0.17445244 0.01116633 0.81438123 0.37382665
18 0.17210402 0.00718997 0.82070601 0.36879432
19 0.17061075 0.00461651 0.82477274 0.36559445
20 0.16965964 0.00295882 0.82738154 0.36355638
21 0.1690532 0.00189419 0.82905261 0.36225686
22 0.16866625 0.00121174 0.83012201 0.36142767
23 0.16841923 0.00077481 0.83080596 0.36089835
24 0.1682615 0.00049528 0.83124323 0.36056035
25 0.16816075 0.00031653 0.83152271 0.36034447
26 0.16809641 0.00020227 0.83170132 0.36020658
27 0.1680553 0.00012925 0.83181545 0.3601185
28 0.16802904 8.2582E-05 0.83188838 0.36006223
29 0.16801226 5.2763E-05 0.83193497 0.36002628
30 0.16800155 3.3711E-05 0.83196474 0.36000332
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pB=2, y=0.7
time (days) S | R R(E)
0 0.999 0.001 0 2.85714286
1 0.99491612 0.00365016 0.00143372 2.84261748
2 0.98027167 0.01310457 0.00662376 2.8007762
3 0.93086486 0.04441091 0.02472423 2.65961388
4 0.79307926 0.12612967 0.08079106 2.26594075
5 0.54742509 0.24203971 0.2105352 1.56407169
6 0.31806937 0.28136078 0.40056985 0.90876963
7 0.18928542 0.22849002 0.58222456 0.54081548
8 0.12914419 0.15481697 0.71603885 0.36898339
9 0.10079762 0.09642836 0.80277403 0.28799319
10 0.08665821 0.05766775 0.85567404 0.2475949
11 0.07924426 0.0337788 0.88697694 0.22641217
12 0.07522172 0.0195681 0.90521018 0.21491919
13 0.07299226 0.01126724 0.9157405 0.2085493
14 0.07174075 0.00646572 0.92179353 0.20497358
15 0.07103297 0.00370329 0.92526375 0.20295133
16 0.07063094 0.00211879 0.92725026 0.20180269
17 0.07040202 0.0012115 0.92838648 0.20114863
18 0.07027149 0.00069248 0.92903604 0.20077567
19 0.07019699 0.00039573 0.92940728 0.20056282
20 0.07015445 0.00022612 0.92961942 0.20044129
21 0.07013016 0.0001292 0.92974064 0.20037189
22 0.07011628 7.3819E-05 0.9298099 0.20033224
23 0.07010836 4.2175E-05 0.92984947 0.20030959
24 0.07010383 2.4096E-05 0.92987207 0.20029666
25 0.07010124 1.3767E-05 0.92988499 0.20028926
26 0.07009976 7.8652E-06 0.92989237 0.20028504
27 0.07009892 4.4936E-06 0.92989659 0.20028263
28 0.07009844 2.5673E-06 0.929899 0.20028125
29 0.07009816 1.4667E-06 0.92990037 0.20028046
30 0.070098 8.3798E-07 0.92990116 0.20028001
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p=2.5, y=0.7
time (days) S | R R(E)
0 0.999 0.001 0 3.57142857
1 0.99204751 0.00599704 0.00195546 3.54302681
2 0.95229414 0.03429923 0.01340663 3.40105049
3 0.77423604 0.15439812 0.07136584 2.7651287
4 0.40991882 0.3406584 0.24942278 1.46399579
5 0.16899824 0.33347915 0.49752262 0.60356514
6 0.08406682 0.2228932 0.69303998 0.30023865
7 0.05443395 0.13083138 0.81473467 0.19440698
8 0.04244866 0.07318268 0.88436866 0.15160235
9 0.03699029 0.04010188 0.92290783 0.13210817
10 0.03431576 0.02176224 0.943922 0.12255629
11 0.03294951 0.01175257 0.95529791 0.11767684
12 0.03223533 0.006331 0.96143367 0.11512619
13 0.03185729 0.00340595 0.96473675 0.11377605
14 0.03165583 0.00183105 0.96651312 0.11305652
15 0.03154806 0.00098401 0.96746793 0.11267165
16 0.03149031 0.0005287 0.96798099 0.11246539
17 0.03145932 0.00028404 0.96825664 0.11235472
18 0.03144269 0.00015259 0.96840472 0.11229532
19 0.03143376 8.1968E-05 0.96848428 0.11226342
20 0.03142896 4.4032E-05 0.96852701 0.11224628
21 0.03142638 2.3653E-05 0.96854996 0.11223708
22 0.031425 1.2706E-05 0.9685623 0.11223214
23 0.03142426 6.8251E-06 0.96856892 0.11222948
24 0.03142386 3.6662E-06 0.96857248 0.11222806
25 0.03142364 1.9694E-06 0.96857439 0.11222729
26 0.03142353 1.0579E-06 0.96857542 0.11222688
27 0.03142346 5.6827E-07 0.96857597 0.11222666
28 0.03142343 3.0526E-07 0.96857626 0.11222654
29 0.03142341 1.6397E-07 0.96857642 0.11222648
30 0.0314234 8.8082E-08 0.96857651 0.11222644
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B =3,7=0.7
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0.999
0.98745479
0.88703635

0.4737379
0.13891631
0.05155478
0.02868568
0.02085045
0.01760899
0.01611713
0.01539015
0.01502508
0.01483884
0.01474306
0.01469359
0.01466798

0.0146547
0.01464782
0.01464425

0.0146424
0.01464144
0.01464094
0.01464068
0.01464055
0.01464048
0.01464044
0.01464042
0.01464041
0.01464041
0.01464041
0.01464041

Matura Project

0.001
0.00983293
0.08522759
0.35217197

0.4007443
0.2568196
0.14289772
0.07629434
0.0401104
0.02094609
0.01090353
0.00566693
0.00294295
0.00152771
0.00079288
0.00041146
0.00021351
0.00011079
5.7488E-05
2.983E-05
1.5478E-05
8.0314E-06
4.1674E-06
2.1624E-06
1.122E-06
5.8219E-07
3.0209E-07
1.5675E-07
8.1334E-08
4.2203E-08
2.1898E-08

0
0.00271228
0.02773606
0.17409013
0.46033939
0.69162562
0.82841661
0.90285521
0.94228061
0.96293678
0.97370632
0.97930799
0.98221821
0.98372923
0.98451353
0.98492056
0.98513178
0.98524139
0.98529826
0.98532777
0.98534308
0.98535103
0.98535515
0.98535729

0.9853584
0.98535898
0.98535927
0.98535943
0.98535951
0.98535955
0.98535957

R(E)

December 2022

4.28571429
4.23194911
3.80158435
2.03030529
0.59535562
0.22094907
0.12293861
0.08935905
0.07546708
0.06907343
0.06595779
0.06439318
0.06359504
0.06318454
0.06297251
0.06286276
0.06280588
0.06277638
0.06276108
0.06275315
0.06274903
0.06274689
0.06274578
0.06274521
0.06274491
0.06274475
0.06274467
0.06274463
0.06274461

0.0627446
0.06274459
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p=3.5, y=0.7
time (days) S | R R(E)
0 0.999 0.001 0 5
1 0.980111907 0.01607049 0.0038176 4.90055954
2 0.754377745 0.18944995 0.05617231 3.77188872
3 0.207754398 0.47816597 0.31407964 1.03877199
4 0.046977273 0.34160456 0.61141817 0.23488637
5 0.018955256 0.18811004 0.7929347 0.09477628
6 0.011666134 0.09832093 0.89001294 0.05833067
7 0.009070993 0.05059439 0.94033462 0.04535496
8 0.007972598 0.02587852 0.96614889 0.03986299
9 0.007463923 0.01320134 0.97933474 0.03731961
10 0.007217223 0.00672586 0.98605692 0.03608611
11 0.007094723 0.00342459 0.98948069 0.03547362
12 0.007033162 0.00174315 0.99122369 0.03516581
13 0.007002034 0.00088714 0.99211083 0.03501017
14 0.006986246 0.00045146 0.9925623 0.03493123
15 0.006978225 0.00022973 0.99279204 0.03489112
16 0.006974147 0.0001169 0.99290895 0.03487073
17 0.006972073 5.9486E-05 0.99296844 0.03486036
18 0.006971018 3.0269E-05 0.99299871 0.03485509
19 0.006970481 1.5403E-05 0.99301412 0.0348524
20 0.006970208 7.8376E-06 0.99302195 0.03485104
21 0.006970069 3.9881E-06 0.99302594 0.03485034
22 0.006969998 2.0294E-06 0.99302797 0.03484999
23 0.006969962 1.0326E-06 0.99302901 0.03484981
24 0.006969944 5.2546E-07 0.99302953 0.03484972
25 0.006969934 2.6738E-07 0.9930298 0.03484967
26 0.006969929 1.3605E-07 0.99302993 0.03484965
27 0.006969927 6.9231E-08 0.99303 0.03484964
28 0.006969926 3.5228E-08 0.99303004 0.03484963
29 0.006969925 1.7926E-08 0.99303006 0.03484963
30 0.006969925 9.1215E-09 0.99303007 0.03484962
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p=4, y=0.7
time (days) S | R R(E)
0 0.999 0.001 0 5.71428571
1 0.9684306 0.02613076 0.00543864 5.53388915
2 0.54828266 0.34672367 0.10499367 3.1330438
3 0.0807944 0.47910735 0.44009825 0.46168229
4 0.01788912 0.27816254 0.70394834 0.10222355
5 0.00788214 0.14474059 0.84737728 0.04504078
6 0.00517166 0.07370521 0.92112313 0.02955235
7 0.00417604 0.03728066 0.95854329 0.02386311
8 0.0037485 0.01880668 0.97744482 0.02142
9 0.00354984 0.00947598 0.98697418 0.0202848
10 0.00345379 0.0047719 0.99177431 0.01973596
11 0.00340642 0.00240237 0.99419121 0.01946526
12 0.00338282 0.00120928 0.9954079 0.0193304
13 0.003371 0.00060868 0.99602032 0.01926287
14 0.00336507 0.00030636 0.99632857 0.01922897
15 0.00336209 0.00015419 0.99648372 0.01921193
16 0.00336059 7.7607E-05 0.99656181 0.01920336
17 0.00335983 3.906E-05 0.99660111 0.01919905
18 0.00335945 1.9659E-05 0.99662089 0.01919688
19 0.00335926 9.8944E-06 0.99663084 0.01919578
20 0.00335917 4.9799E-06 0.99663585 0.01919523
21 0.00335912 2.5064E-06 0.99663838 0.01919496
22 0.00335909 1.2615E-06 0.99663965 0.01919482
23 0.00335908 6.349E-07 0.99664028 0.01919475
24 0.00335907 3.1955E-07 0.99664061 0.01919471
25 0.00335907 1.6083E-07 0.99664077 0.0191947
26 0.00335907 8.0946E-08 0.99664085 0.01919469
27 0.00335907 4.074E-08 0.99664089 0.01919468
28 0.00335907 2.0505E-08 0.99664091 0.01919468
29 0.00335907 1.032E-08 0.99664092 0.01919468
30 0.00335907 5.1941E-09 0.99664093 0.01919468
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Now we introduce changing recovery rates.

p=3,y=0.5
time S | R R(E)
0 0.999 0.001 0 6
1 0.98578401 0.01199641 0.002219585 5.91470404
2 0.85088719 0.12236694 0.02674587 5.10532314
3 0.35014725 0.47511925 0.174733502 2.10088348
4 0.07410341 0.49234772 0.433548877 0.44462045
5 0.02131878 0.33748684 0.641194379 0.1279127
6 0.00943835 0.21356603 0.776995624 0.05663009
7 0.00566925 0.13238123 0.861949513 0.03401553
8 0.00413851 0.08145848 0.914403006 0.02483108
9 0.00341099 0.04996358 0.946625431 0.02046593
10 0.00302986 0.03059688 0.966373269 0.01817914
11 0.00281789 0.01872089 0.978461227 0.01690732
12 0.0026956 0.0114489 0.985855497 0.01617362
13 0.00262346 0.00699967 0.990376872 0.01574075
14 0.00258031 0.00427876 0.993140931 0.01548185
15 0.00255428 0.00261526 0.99483046 0.01532571
16 0.00253851 0.00159839 0.995863099 0.01523104
17 0.00252891 0.00097687 0.996494217 0.01517348
18 0.00252307 0.00059701 0.996879924 0.0151384
19 0.0025195 0.00036485 0.997115646 0.01511701
20 0.00251732 0.00022297 0.997259703 0.01510395
21 0.00251599 0.00013626 0.99734774 0.01509597
22 0.00251518 8.3275E-05 0.997401542 0.0150911
23 0.00251469 5.0891E-05 0.997434422 0.01508812
24 0.00251438 3.1101E-05 0.997454516 0.0150863
25 0.0025142 1.9006E-05 0.997466795 0.01508519
26 0.00251409 1.1615E-05 0.9974743 0.01508451
27 0.00251402 7.0983E-06 0.997478886 0.0150841
28 0.00251397 4.338E-06 0.997481688 0.01508384
29 0.00251395 2.651E-06 0.997483401 0.01508369
30 0.00251393 1.6201E-06 0.997484448 0.01508359
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B=3, y=1
time S | R R(E)
0 0.999 0.001 0 3
1 0.98953009 0.00729504 0.00317487 2.96859027
2 0.9258477 0.04880396 0.02534834 2.7775431
3 0.65221742 0.20565698 0.1421256 1.95665226
4 0.28752427 0.29732656 0.41514917 0.8625728
5 0.13451784 0.19712951 0.66835266 0.40355351
6 0.08715406 0.09982012 0.81302582 0.26146217
7 0.07064994 0.04634421 0.88300585 0.21194981
8 0.06419006 0.02084113 0.91496882 0.19257017
9 0.06149812 0.00925248 0.9292494 0.18449436
10 0.06034263 0.00408538 0.93557199 0.18102789
11 0.05983995 0.00179964 0.93836041 0.17951986
12 0.05961996 0.00079194 0.9395881 0.17885989
13 0.05952344 0.00034834 0.94012822 0.17857031
14 0.05948103 0.00015319 0.94036578 0.17844309
15 0.05946239 6.7363E-05 0.94047025 0.17838718
16 0.0594542 2.962E-05 0.94051618 0.17836259
17 0.0594506 1.3024E-05 0.94053638 0.17835179
18 0.05944901 5.7269E-06 0.94054526 0.17834703
19 0.05944831 2.5181E-06 0.94054917 0.17834494
20 0.05944801 1.1072E-06 0.94055088 0.17834403
21 0.05944787 4.8685E-07 0.94055164 0.17834362
22 0.05944781 2.1407E-07 0.94055197 0.17834344
23 0.05944779 9.4127E-08 0.94055212 0.17834337
24 0.05944778 4.1388E-08 0.94055218 0.17834333
25 0.05944777 1.8198E-08 0.94055221 0.17834332
26 0.05944777 8.0019E-09 0.94055222 0.17834331
27 0.05944777 3.5184E-09 0.94055223 0.17834331
28 0.05944777 1.5471E-09 0.94055223 0.17834331
29 0.05944777 6.8025E-10 0.94055223 0.17834331
30 0.05944777 2.9911E-10 0.94055223 0.17834331
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B=3, y=1.5
time S | R R(E)
0 0.999 0.001 0 2
1 0.99210277 0.00443319 0.00346404 1.98420554
2 0.96278062 0.01875478 0.0184646 1.92556124
3 0.85757363 0.0661025 0.07632387 1.71514725
4 0.62686913 0.14012238 0.2330085 1.25373825
5 0.40017395 0.14239832 0.45742773 0.8003479
6 0.2830734 0.08640232 0.63052428 0.5661468
7 0.23506145 0.04148464 0.72345391 0.4701229
8 0.21589812 0.0181278 0.76597408 0.43179624
9 0.20816848 0.00762801 0.78420351 0.41633696
10 0.20502328 0.0031611 0.79181563 0.41004656
11 0.20373786 0.00130184 0.7949603 0.40747572
12 0.2032115 0.00053477 0.79625372 0.40642301
13 0.20299579 0.00021945 0.79678476 0.40599159
14 0.20290736 9.0012E-05 0.79700263 0.40581472
15 0.2028711 3.6914E-05 0.79709198 0.4057422
16 0.20285623 1.5138E-05 0.79712863 0.40571247
17 0.20285014 6.2074E-06 0.79714365 0.40570028
18 0.20284764 2.5454E-06 0.79714982 0.40569528
19 0.20284661 1.0438E-06 0.79715234 0.40569323
20 0.20284619 4.28E-07 0.79715338 0.40569239
21 0.20284602 1.755E-07 0.7971538 0.40569204
22 0.20284595 7.1967E-08 0.79715398 0.4056919
23 0.20284592 2.951E-08 0.79715405 0.40569184
24 0.20284591 1.2101E-08 0.79715408 0.40569182
25 0.2028459 4.962E-09 0.79715409 0.40569181
26 0.2028459 2.0347E-09 0.7971541 0.4056918
27 0.2028459 8.3434E-10 0.7971541 0.4056918
28 0.2028459 3.4213E-10 0.7971541 0.4056918
29 0.2028459 1.4029E-10 0.7971541 0.4056918
30 0.2028459 5.7527E-11 0.7971541 0.4056918
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p=3,y=2
time S | R R(E)
0 0.999 0.001 0 1.5
1 0.99388517 0.00269276 0.00342207 1.49082775
2 0.98041701 0.00706514 0.01251785 1.47062551
3 0.9470504 0.01734796 0.03560165 1.4205756
4 0.87536866 0.03655824 0.0880731 1.31305299
5 0.75842157 0.05790151 0.18367693 1.13763235
6 0.62928946 0.06260158 0.30810895 0.9439342
7 0.53158544 0.04782067 0.4205939 0.79737816
8 0.47406845 0.02899618 0.49693537 0.71110267
9 0.44419618 0.01547817 0.54032565 0.66629427
10 0.42950476 0.00774727 0.56274797 0.64425714
11 0.42244558 0.00375832 0.5737961 0.63366836
12 0.41908811 0.00179616 0.57911572 0.62863217
13 0.41749861 0.00085235 0.58164905 0.62624791
14 0.4167477 0.00040312 0.58284919 0.62512155
15 0.41639331 0.00019035 0.58341634 0.62458996
16 0.41622613 8.9816E-05 0.58368405 0.6243392
17 0.41614729 4.2365E-05 0.58381035 0.62422094
18 0.41611011 1.9979E-05 0.58386991 0.62416516
19 0.41609258 9.4215E-06 0.583898 0.62413887
20 0.41608431 4.4427E-06 0.58391125 0.62412646
21 0.41608041 2.0949E-06 0.58391749 0.62412062
22 0.41607857 9.8781E-07 0.58392044 0.62411786
23 0.41607771 4.6579E-07 0.58392183 0.62411656
24 0.4160773 2.1963E-07 0.58392248 0.62411595
25 0.4160771 1.0356E-07 0.58392279 0.62411566
26 0.41607701 4.8834E-08 0.58392294 0.62411552
27 0.41607697 2.3027E-08 0.58392301 0.62411546
28 0.41607695 1.0858E-08 0.58392304 0.62411543
29 0.41607694 5.1198E-09 0.58392305 0.62411541
30 0.41607694 2.4142E-09 0.58392306 0.62411541
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B=3, y=2.5
time S | R R(E)
0 0.999 0.001 0 1.2
1 0.99513283 0.00163504 0.00323213 1.1941594
2 0.98888866 0.00263381 0.00847752 1.1866664
3 0.97903009 0.00414291 0.016827 1.17483611
4 0.96399979 0.00628046 0.02971975 1.15679975
5 0.94225279 0.00901289 0.04873432 1.13070334
6 0.91302428 0.01198213 0.07499358 1.09562914
7 0.87733034 0.01444367 0.10822599 1.05279641
8 0.83837989 0.01555057 0.14606954 1.00605587
9 0.80059837 0.01490549 0.18449614 0.96071805
10 0.7677563 0.01284169 0.21940201 0.92130756
11 0.74170935 0.01012621 0.24816443 0.89005122
12 0.72245306 0.00746167 0.27008528 0.86694367
13 0.70891715 0.00523609 0.28584676 0.85070058
14 0.69972608 0.00355239 0.29672153 0.8396713
15 0.69362768 0.00235612 0.3040162 0.83235322
16 0.68964207 0.00153955 0.30881838 0.82757048
17 0.68706267 0.00099627 0.31194106 0.8244752
18 0.68540382 0.00064068 0.31395549 0.82248459
19 0.68434131 0.00041036 0.31524833 0.82120957
20 0.6836625 0.00026216 0.31607534 0.820395
21 0.68322954 0.00016721 0.31660325 0.81987545
22 0.68295368 0.00010654 0.31693978 0.81954442
23 0.68277804 6.7835E-05 0.31715413 0.81933365
24 0.68266625 4.3174E-05 0.31729058 0.8191995
25 0.68259512 2.7471E-05 0.31737741 0.81911414
26 0.68254987 1.7476E-05 0.31743265 0.81905984
27 0.68252109 1.1117E-05 0.3174678 0.8190253
28 0.68250278 7.0707E-06 0.31749015 0.81900333
29 0.68249113 4.4972E-06 0.31750437 0.81898936
30 0.68248373 2.8603E-06 0.31751341 0.81898047
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p=3,y=3
time S | R R(E)
0 0.999 0.001 0 1
1 0.99601642 0.00099254 0.00299103 0.99601642
2 0.99307698 0.00097643 0.00594659 0.99307698
3 0.99020628 0.00095223 0.0088415 0.99020628
4 0.98742651 0.00092079 0.0116527 0.98742651
5 0.98475688 0.00088313 0.01435999 0.98475688
6 0.98221317 0.00084041 0.01694642 0.98221317
7 0.97980754 0.00079385 0.01939862 0.97980754
8 0.97754852 0.00074463 0.02170685 0.97754852
9 0.97544121 0.0006939 0.02386489 0.97544121
10 0.9734875 0.00064271 0.0258698 0.9734875
11 0.9716865 0.00059194 0.02772156 0.9716865
12 0.97003497 0.00054237 0.02942265 0.97003497
13 0.96852778 0.00049461 0.03097761 0.96852778
14 0.96715833 0.00044911 0.03239257 0.96715833
15 0.96591895 0.0004062 0.03367485 0.96591895
16 0.96480133 0.0003661 0.03483257 0.96480133
17 0.96379676 0.0003289 0.03587434 0.96379676
18 0.96289642 0.00029465 0.03680893 0.96289642
19 0.9620916 0.00026329 0.03764512 0.9620916
20 0.96137382 0.00023473 0.03839145 0.96137382
21 0.96073502 0.00020884 0.03905615 0.96073502
22 0.96016753 0.00018547 0.039647 0.96016753
23 0.95966422 0.00016445 0.04017132 0.95966422
24 0.95921849 0.00014561 0.0406359 0.95921849
25 0.95882425 0.00012877 0.04104699 0.95882425
26 0.95847594 0.00011374 0.04141031 0.95847594
27 0.95816853 0.00010037 0.04173109 0.95816853
28 0.95789746 8.8498E-05 0.04201404 0.95789746
29 0.95765861 7.7969E-05 0.04226343 0.95765861
30 0.95744829 6.8646E-05 0.04248306 0.95744829
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B =3,y=3.5
time S | R R(E)
0 0.999 0.001 0 0.85714286
1 0.9966503 0.00060241 0.0027473 0.85427168
2 0.99524138 0.0003609 0.00439772 0.85306404
3 0.99439966 0.0002155 0.00538484 0.85234257
4 0.99389789 0.00012842 0.00597369 0.85191248
5 0.99359916 7.6442E-05 0.0063244 0.85165642
6 0.99342145 4.5469E-05 0.00653308 0.8515041
7 0.99331578 2.7035E-05 0.00665718 0.85141353
8 0.99325297 1.607E-05 0.00673096 0.85135969
9 0.99321563 9.5513E-06 0.00677481 0.85132769
10 0.99319345 5.6762E-06 0.00680088 0.85130867
11 0.99318026 3.3731E-06 0.00681637 0.85129737
12 0.99317243 2.0045E-06 0.00682557 0.85129065
13 0.99316777 1.1911E-06 0.00683104 0.85128666
14 0.993165 7.0778E-07 0.00683429 0.85128429
15 0.99316336 4.2058E-07 0.00683622 0.85128288
16 0.99316238 2.4991E-07 0.00683737 0.85128204
17 0.9931618 1.485E-07 0.00683805 0.85128154
18 0.99316146 8.8242E-08 0.00683845 0.85128125
19 0.99316125 5.2435E-08 0.0068387 0.85128107
20 0.99316113 3.1158E-08 0.00683884 0.85128097
21 0.99316106 1.8514E-08 0.00683892 0.85128091
22 0.99316101 1.1001E-08 0.00683897 0.85128087
23 0.99316099 6.5372E-09 0.006839 0.85128085
24 0.99316097 3.8845E-09 0.00683902 0.85128083
25 0.99316097 2.3082E-09 0.00683903 0.85128083
26 0.99316096 1.3716E-09 0.00683904 0.85128082
27 0.99316096 8.15E-10 0.00683904 0.85128082
28 0.99316095 4.8429E-10 0.00683904 0.85128082
29 0.99316095 2.8777E-10 0.00683905 0.85128082
30 0.99316095 1.71E-10 0.00683905 0.85128082
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p =3, y=4
time S | R R(E)
0 0.999 0.001 0 0.75
1 0.99711142 0.00036557 0.00252301 0.74783357
2 0.99642314 0.00013316 0.00344369 0.74731736
3 0.9961727 4.8444E-05 0.00377885 0.74712953
4 0.99608163 1.7615E-05 0.00390075 0.74706122
5 0.99604852 6.4043E-06 0.00394507 0.74703639
6 0.99603649 2.3282E-06 0.00396119 0.74702736
7 0.99603211 8.4636E-07 0.00396704 0.74702408
8 0.99603052 3.0767E-07 0.00396917 0.74702289
9 0.99602994 1.1185E-07 0.00396995 0.74702246
10 0.99602973 4.0659E-08 0.00397023 0.7470223
11 0.99602965 1.478E-08 0.00397033 0.74702224
12 0.99602963 5.373E-09 0.00397037 0.74702222
13 0.99602962 1.9532E-09 0.00397038 0.74702221
14 0.99602961 7.1005E-10 0.00397039 0.74702221
15 0.99602961 2.5812E-10 0.00397039 0.74702221
16 0.99602961 9.3832E-11 0.00397039 0.74702221
17 0.99602961 3.411E-11 0.00397039 0.74702221
18 0.99602961 1.24E-11 0.00397039 0.74702221
19 0.99602961 4.5076E-12 0.00397039 0.74702221
20 0.99602961 1.6386E-12 0.00397039 0.74702221
21 0.99602961 5.9568E-13 0.00397039 0.74702221
22 0.99602961 2.1654E-13 0.00397039 0.74702221
23 0.99602961 7.8719E-14 0.00397039 0.74702221
24 0.99602961 2.8616E-14 0.00397039 0.74702221
25 0.99602961 1.0403E-14 0.00397039 0.74702221
26 0.99602961 3.7816E-15 0.00397039 0.74702221
27 0.99602961 1.3747E-15 0.00397039 0.74702221
28 0.99602961 4.9974E-16 0.00397039 0.74702221
29 0.99602961 1.8167E-16 0.00397039 0.74702221
30 0.99602961 6.604E-17 0.00397039 0.74702221
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Appendix |

Excel Solutions and Error Data

The following tables contain the ode23 and Euler Excel solutions for h=1 and h=0.5,

including error estimates and quotients.

h=1 | second order sol third order sol

t S | R N t S | R N
0 0.99 0.01 0 1 0 0.99 0.01 0 1
1 0.986886156 0.01101364 0.002100207 @ 1 1 0.986886662 0.01101351 0.002099825 1
2 0.983470248 0.012118 0.004411747 1 2 0.983470777 0.01211788 0.004411341 1
3 0.979727478 0.01331881 0.006953712 1 3 0.979728025 0.01331869 0.006953282 1
4 0.975632651 0.01462142 0.009745929 1 4 0.975633213 0.01462131 0.009745478 1
5 0.971159908 0.01603082 0.012809268 @1 5 0.971160478 0.01603073 0.012808797 1
6 0.966282988 0.01755147 0.016165544 1 6 0.966283559 0.01755138 0.016165056 @ 1
7 0.960975573 0.01918704 0.019837389 1 7 0.960976136 0.01918698 0.019836887 1
8 0.955211687 0.02094024 0.023848077 1 8 0.955212232 0.0209402 0.023847568 1
9 0.948966178 0.02281252 0.028221305 1 9 0.948966693 0.02281251 0.028220793 1
10 0.942215271 0.02480382 0.032980911 1 10 0.942215742 0.02480385 0.032980405 1
11 0.934937187 0.02691227 0.038150547 1 11 0.9349376 0.02691235 0.038150055 1
12 0.92711283 0.02913389 0.043753284 1 12 0.927113168 0.02913402 0.043752815 1
13 0.918726514 0.03146232 0.049811164 1 13 0.918726762 0.03146251 0.04981073 1
14 0.909766727 0.03388857 0.056344698 1 14 0.909766868 0.03388882 0.05634431 1
15 0.900226895 0.03640079 0.063372315 1 15 0.900226912 0.0364011 0.063371985 1
16 0.890106119 0.03898411 0.070909772 1 | 16 0.890106 0.03898449 0.070909515 | 1
17 0.879409857 0.04162059 0.078969549 1 17 0.879409589 0.04162103 0.078969376 @1
18 0.868150496 0.04428927 0.087560231 1 18 0.86815007 0.04428977 0.087560156 @ 1
19 0.85634779 0.04696629 0.096685918 1 19 0.856347202 0.04696685 0.096685951 1
20 0.84402912 0.04962521 0.106345671 1 20 0.844028368 0.04962581 0.106345822 1
21 0.831229536 0.05223742 0.11653304 1 21 0.831228626 0.05223806 0.116533317 1
22 0.817991571 0.05477274 0.127235684 1 22 0.817990514 0.05477339 0.127236092 1
23 0.804364799 0.05720008 0.138435121 1 23 0.80436361 0.05720073 0.13843566 1
24 0.790405143 0.05948823 0.150106624 1 24 0.790403841 0.05948887 0.150107292 1
25 0.77617395 0.06160676 0.162219289 1 25 0.776172562 0.06160736 0.16222008 1
26 0.761736867 0.06352686 0.174736271 1 26 0.76173542 0.0635274 0.174737176 @ 1
27 0.747162547 0.06522225 0.187615204 1 27 0.747161071 0.06522272 0.187616209 1
28 0.732521263 0.06666995 0.200808783 1 28 0.732519788 0.06667034 0.200809873 ' 1

(o))
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29 0.71788347 0.06785103 0.214265502 1 29 0.717882027 0.06785132 0.214266657 1
30 0.703318397 0.06875109 0.227930514 1 30 0.703317013 0.06875127 0.227931714 | 1

h=0.5 second order sol third order sol

t S | R t S | R
0 0.99 0.01 0 0 0.99 0.01 0
0.5 0.98847957 0.01049578 0.00102465 0.5 0.988479631 0.01049576 0.001024604
1 0.986886523 0.01101355 0.002099926 1 0.986886585 0.01101354 0.002099879
1.5 0.985217852 0.01155404 0.00322811 1.5 0.985217916 0.01155402 0.003228061
2 0.983470548 0.01211795 0.004411507 2 0.983470614 0.01211793 0.004411456
25 0.981641539 0.01270597 0.005652494 2.5 0.981641606 0.01270595 0.005652442
3 0.9797277 0.01331878 0.006953518 3 0.979727767 0.01331877 0.006953465
3.5 0.977725853 0.01395706 0.008317091 3.5 0.977725921 0.01395704 0.008317036
4 0.975632782 0.01462143 0.009745791 4 0.975632851 0.01462141 0.009745735
4.5 0.973445235 0.01531251 0.011242258 4.5 0.973445305 0.01531249 0.011242201
5 0.971159934 0.01603087 0.012809193 5 0.971160004 0.01603086 0.012809135
5.5 0.968773588 0.01677706 0.014449352 5.5 0.968773658 0.01677705 0.014449292
6 0.966282898 0.01755156 0.016165541 6 0.966282968 0.01755155 0.01616548
6.5 0.963684576 0.01835481 0.017960614 6.5 0.963684646 0.0183548 0.017960553
7 0.960975353 0.01918718 0.019837466 7 0.960975422 0.01918717 0.019837403
7.5 0.958151997 0.02004898 0.021799023 7.5 0.958152065 0.02004897 0.021798961
8 0.955211326 0.02094043 0.023848242 8 0.955211392 0.02094043 0.023848179
8.5 0.952150224 0.02186168 0.025988095 8.5 0.952150289 0.02186168 0.025988032
9 0.948965664 0.02281277 0.028221566 9 0.948965726 0.02281277 0.028221503
9.5 0.945654721 0.02379364 0.030551635 9.5 0.94565478 0.02379365 0.030551573
10 0.942214595 0.02480413 0.032981275 10 0.942214651 0.02480414 0.032981213
10.5 0.93864263 0.02584394 0.035513433 10.5 0.938642683 0.02584395 0.035513371
11 0.934936341 0.02691264 0.03815102 11 0.934936389 0.02691265 0.03815096
11.5 0.931093428 0.02800967 0.0408969 115 0.931093472 0.02800969 0.040896841
12 0.927111807 0.02913432 0.043753871 12 0.927111846 0.02913434 0.043753814
125 0.922989631 0.03028572 0.046724652 12.5 0.922989664 0.03028574 0.046724597
13 0.918725311 0.03146282 0.049811868 13 0.918725339 0.03146285 0.049811816
13.5 0.914317547 0.03266442 0.053018031 13.5 0.914317568 0.03266445 0.053017981
14 0.909765344 0.03388913 0.056345522 14 0.909765358 0.03388917 0.056345475
14.5 0.905068042 0.03513538 0.059796575 14.5 0.905068048 0.03513542 0.059796532
15 0.900225334 0.03640141 0.063373258 15 0.900225333 0.03640145 0.063373219
15.5 0.895237293 0.03768526 0.067077452 15.5 0.895237283 0.0376853 0.067077417
16 0.890104387 0.03898478 0.070910834 16 0.890104368 0.03898483 0.070910804
16.5 0.884827503 0.04029764 0.074874855 16.5 0.884827475 0.04029769 0.074874831
17 0.879407962 0.04162131 0.078970726 17 0.879407925 0.04162137 0.078970707
17.5 0.873847534 0.04295307 0.083199392 17.5 0.873847486 0.04295313 0.083199379
18 0.86814845 0.04429003 0.08756152 18 0.868148392 0.04429009 0.087561513
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18.5 0.862313413 0.04562911 0.092057476  18.5 0.862313346 0.04562918 0.092057476
19 0.856345606 0.04696708 0.096687313 19 0.856345529 0.04696715 0.096687319
19.5 0.850248692 0.04830056 0.101450751 195 0.850248604 0.04830063 0.101450765
20 0.844026814 0.04962602 0.106347166 20 0.844026717 0.0496261 0.106347188
20.5 0.837684595 0.05093983 0.111375576  20.5 0.837684488 0.05093991 0.111375605
21 0.831227126 0.05223825 0.116534629 21 0.831227009 0.05223832 0.116534667
21.5 0.824659955 0.05351745 0.121822596  21.5 0.824659829 0.05351753 0.121822641
22 0.817989074 0.05477357 0.127237361 22 0.817988938 0.05477365 0.127237414
22,5 0.811220895 0.05600268 0.13277642  22.5 0.811220752 0.05600277 0.132776482
23 0.804362231 0.05720089 0.138436879 23 0.80436208 0.05720097 0.138436949
23.5 0.797420264 0.05836429 0.14421545  23.5 0.797420106 0.05836437 0.144215528
24 0.79040252 0.05948902 0.150108459 24 0.790402355 0.0594891 0.150108545
24.5 0.783316827 0.06057132 0.156111851  24.5 0.783316657 0.0605714 0.156111945
25 0.776171287 0.06160752 0.162221198 25 0.776171112 0.06160759 0.162221299
25.5 0.768974229 0.06259406 0.16843171  25.5 0.768974051 0.06259413 0.168431819
26 0.761734175 0.06352757 0.174738252 26 0.761733993 0.06352764 0.174738368
26.5 0.754459788 0.06440485 0.18113536 = 26.5 0.754459605 0.06440491 0.181135481
27 0.747159836 0.06522291 0.187617257 27 0.747159652 0.06522296 0.187617385
27.5 0.739843142 0.06597898 0.194177883  27.5 0.739842958 0.06597903 0.194178015
28 0.732518541 0.06667055 0.200810909 28 0.732518357 0.0666706 0.200811047
28.5 0.725194832 0.06729539 0.207509774  28.5 0.725194651 0.06729543 0.207509916
29 0.717880741 0.06785156 0.214267703 29 0.717880562 0.06785159 0.214267849
29.5 0.710584871 0.06833738 0.221077744  29.5 0.710584696 0.06833741 0.221077892
30 0.703315665 0.06875154 0.227932793 30 0.703315494 0.06875156 0.227932944

h=1 Euler solution
t S | R N
0 0.99 0.01 0 1
1 0.98505 0.01295 0.002 1
2 0.9786718 0.0167382 0.00459 1
3 0.9704812 0.02158116 0.00793764 1
4 0.96000914 0.02773698 0.01225387 1
5 0.94669527 0.03550347 0.01780127 1
6 0.92988978 0.04520825 0.02490196 1
7 0.90887044 0.05718595 0.03394361 1
8 0.88288313 0.07173607 0.0453808 1
9 0.85121584 0.08905614 0.05972802 1
10 0.81331285 0.10914791 0.07753924 1
11 0.76892715 0.13170403 0.09936883 1
12 0.71829175 0.15599862 0.12570963 1
13 0.66226549 0.18082516 0.15690936 1
14 0.60238835 0.20453726 0.19307439 1
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h=0.01

70

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
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0.54078292
0.47988124
0.42203398
0.36912798
0.32234446
0.28212093
0.24828357

0.2202598
0.19728496
0.17855596
0.16332308
0.15093247
0.14083693
0.13258979
0.12583169
0.12027559

Micro timestepping

S

0.98427136
0.97768513

0.9692415
0.95846863
0.94480826
0.92762119
0.90620879
0.87985834
0.84791992
0.80991804
0.76569218
0.71554367
0.66034824

0.6015823
0.54121972
0.48149302
0.42456724
0.37221985
0.32562417
0.28529051
0.25115294
0.22274072
0.19936353

Matura Project

0.22523524
0.24108987
0.25071915
0.25348132
0.24956858
0.23987839
0.22574007
0.20861583
0.18986751
0.17062301
0.15173128
0.13377564
0.11711605
0.10193998
0.08831008
0.07620417

0.01340738
0.01731309
0.02229567
0.02861196
0.03655406
0.04643685
0.05857206
0.07322351

0.0905399
0.11046584
0.13264164
0.15631644

0.1803129
0.20308557
0.22289802
0.23810162
0.24744655
0.25032436
0.24685675
0.23780726
0.22436393
0.20788125
0.18966085

0.23398184
0.27902889
0.32724686
0.37739069
0.42808696
0.47800067
0.52597635
0.57112437
0.61284753
0.65082104
0.68494564
0.71529189
0.74204702
0.76547023
0.78585823
0.80352024

0.00232126
0.00500178
0.00846283
0.01291941
0.01863768
0.02594196
0.03521916
0.04691815
0.06154018
0.07961612
0.10166618
0.12813989
0.15933885
0.19533213
0.23588226
0.28040536
0.32798621

0.3774558
0.42751907
0.47690222
0.52448313
0.56937803
0.61097562
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24
25
26
27
28
29
30

h=0.5

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5
10
10.5
11
11.5
12
125
13
135

14
14.5
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0.18026193
0.16470587
0.15204592
0.14173129
0.13330842
0.12641038
0.12074311

Euler solution
S

0.99
0.987525
0.98469204
0.98145229
0.97775119
0.97352807
0.96871586
0.96324085
0.95702276
0.94997489
0.9420047
0.93301471
0.922904
0.91157016
0.89891207
0.88483336
0.86924664
0.85207853
0.83327526
0.81280869
0.79068234
0.76693699
0.74165518
0.71496402
0.68703569
0.65808511
0.62836455
0.59815522
0.56775647
0.53747322

Matura Project

0.17081155
0.15218984
0.1343996
0.1178249
0.1026757
0.08903334
0.07689007

0.01
0.011475
0.01316046
0.01508417
0.01727685
0.01977228
0.02260727
0.02582154
0.02945748
0.0335596
0.03817384
0.04334644
0.04912251
0.0555441
0.06264778
0.07046171
0.07900225
0.08827014
0.0982464
0.10888833
0.12012585
0.13185861
0.14395456
0.15625026
0.16855356
0.18064879
0.19230448
0.20328336
0.21335377
0.22230164

0.64892652
0.68310428
0.71355448
0.74044381
0.76401588
0.78455628
0.80236682

0

0.001
0.0021475
0.00346355
0.00497196
0.00669965
0.00867688
0.0109376
0.01351976
0.0164655
0.01982146
0.02363885
0.02797349
0.03288574
0.03844015
0.04470493
0.0517511
0.05965133
0.06847834
0.07830298
0.08919181
0.1012044
0.11439026
0.12878572
0.14441074
0.1612661
0.17933098
0.19856142
0.21888976
0.24022514
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15
15.5
16
16.5
17
17.5
18
18.5
19
19.5
20
20.5
21
21.5
22
22.5
23
23.5
24
24.5
25
25.5
26
26.5
27
27.5
28
28.5
29
29.5
30

h=0.01

0.5

15

2.5

3.5
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0.50760292
0.47842315
0.45018095
0.42308491

0.3973003
0.37294737
0.35010261
0.32880224
0.30904733
0.29080982
0.27403876

0.2586663

0.2446131
0.23179298
0.22011667
0.20949482
0.19984015
0.19106905
0.18310256
0.17586699
0.16929418
0.16332156
0.15789197
0.15295348
0.14845901
0.14436604

0.1406362
0.13723494
0.13413114
0.13129682
0.12870681

Micro timestepping

S

0.98734116
0.98448318
0.98121551
0.97748338
0.97322599
0.96837616
0.96286023

Matura Project

0.22994177
0.23612737
0.24075684
0.24377719
0.24518408

0.2450186

0.2433615
0.24032573
0.23604806
0.23068076
0.22438374
0.21731783
0.20963925
0.20149545
0.19302221
0.18434184
0.17556232
0.16677719
0.15806596
0.14949494
0.14111825
0.13297905
0.12511073
0.11753815

0.1102788
0.10334389
0.09673934
0.09046667

0.0845238
0.07890574
0.07360518

0.01158315
0.01328286
0.01522231

0.0174323
0.01994657
0.02280188
0.02603781

0.2624553
0.28544948
0.30906222

0.3331379
0.35751562
0.38203403
0.40653589
0.43087204
0.45490461
0.47850942
0.50157749
0.52401587
0.54574765
0.56671158
0.58686112
0.60616334
0.62459753
0.64215376
0.65883148
0.67463807
0.68958757
0.70369939

0.7169973
0.72950837
0.74126218
0.75229007
0.76262445
0.77229839
0.78134506
0.78979744
0.79768801

0.0010757
0.00223396
0.00356218
0.00508433
0.00682744
0.00882196
0.01110196
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4.5

5.5

6.5

7.5

8.5

9.5
10
10.5
11
115
12
125
13
135
14
145
15
155
16
16.5
17
17.5
18
18.5
19
19.5
20
20.5
21
21.5
22
22,5
23
23.5
24
24.5
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0.95659803
0.94950315
0.94148357
0.93244257
0.92228029
0.91089575
0.89818962
0.88406771
0.86844518
0.85125151
0.83243593
0.81197329
0.78986985
0.76616851
0.74095306
0.71435065

0.6865321
0.65770941
0.62813049
0.59807102
0.56782406
0.53768805
0.50795437
0.47889547
0.45075465
0.42373828
0.39801099

0.3736938
0.35086504
0.32956355
0.30979342
0.29152967

0.2747243
0.25931211
0.24521601
0.23235164
0.22063118
0.20996631
0.20027051
0.19146064
0.18345801
0.17618906

Matura Project

0.02969648
0.03382201
0.03845979

0.0436553
0.04945268
0.05589274
0.06301057
0.07083262
0.07937334
0.08863143
0.09858595
0.10919242
0.12037942
0.13204598
0.14406035
0.15626053
0.16845708
0.18043824
0.19197756
0.20284338
0.21280988
0.22166843
0.22923833
0.23537592

0.2399811
0.24300071
0.24442872
0.24430332
0.24270156
0.23973235
0.23552841
0.23023828
0.22401865
0.21702773
0.20941979
0.20134094
0.19292611
0.18429724
0.17556227
0.16681495
0.15813522
0.14958987

0.0137055
0.01667484
0.02005665
0.02390213
0.02826703
0.03321151
0.03879981
0.04509967
0.05218148
0.06011706
0.06897813
0.07883429
0.08975073
0.10178551

0.1149866
0.12938882
0.14501082
0.16185234
0.17989196

0.1990856
0.21936606
0.24064352

0.2628073
0.28572861
0.30926425
0.33326101
0.35756029
0.38200289

0.4064334

0.4307041
0.45467817
0.47823205
0.50125705
0.52366016

0.5453642
0.56630742
0.58644271
0.60573645
0.62416722
0.64172441
0.65840677
0.67422107
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25
25.5
26
26.5
27
27.5
28
28.5
29
29.5
30

0.16958564
0.16358509
0.15813013
0.15316868
0.14865348
0.14454182
0.14079516
0.13737877
0.13426136
0.13141482

0.1288138

Matura Project

0.14123361
0.13311018
0.12525357
0.11768919
0.11043506
0.10350284

0.0968989
0.09062513
0.08467978
0.07905814
0.07375317

Now the error stimates are presented.

Local error estimate for
second order solution
h=1

t

= O

O 0 N o U & W N

N NN R R R B R R R R B
N B O W 0 N o Uuu o W N B O
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0
5.06443E-07
5.28751E-07

5.476E-07
5.61835E-07
5.70159E-07
5.71149E-07
5.63285E-07
5.44993E-07
5.14708E-07
4.7095E-07
4.12428E-07
3.38146E-07
2.47534E-07
1.40572E-07
1.79152E-08
1.19008E-07
2.67925E-07
4.25708E-07
5.88413E-07
7.51404E-07
9.09536E-07
1.05742E-06

0.68918075
0.70330473

0.7166163
0.72914213
0.74091147
0.75195534
0.76230594

0.7719961
0.78105886
0.78952704
0.79743303

0
1.2486E-07
1.23034E-07
1.18499E-07
1.10712€E-07
9.91009E-08
8.30823E-08
6.20913E-08
3.56155E-08
3.24108E-09
3.52948E-08
8.00436E-08
1.30783E-07
1.86953E-07
2.47607E-07
3.11366E-07
3.76412E-07
4.40506E-07
5.01046E-07
5.55176E-07
5.99934E-07
6.3244E-07
6.50107E-07

December 2022

0
3.81583E-07
4.05717E-07
4.29101E-07
4.51123E-07
4.71059E-07
4.88067E-07
5.01194E-07
5.09377E-07
5.11466E-07
5.06245E-07
4.92472E-07
4.68929E-07
4.34488E-07
3.88179E-07
3.29281E-07
2.57405E-07
1.72581E-07
7.53381E-08
3.32373E-08

1.5147€-07
2.77096E-07
4.0731E-07
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23 1.18971E-06 6.50864E-07 5.3885E-07
24 1.30148E-06 6.3335E-07 6.68128E-07
25 1.38848E-06 5.97086E-07 7.91397E-07
26 1.4475E-06 5.42564E-07 9.04941E-07
27 1.47655E-06 4.71272E-07 1.00528E-06
28 1.47496E-06 3.85625E-07 1.08934E-06
29 1.44348E-06 2.88821E-07 1.15466E-06
30 1.38413E-06 1.84624E-07 1.19951E-06
Local error estimate for
second order solution
h=0.5
t S | R
0 0 0 0
0.5 6.12949E-08 1.52426E-08 4.60523E-08
1 6.27528E-08 1.51991E-08 4.75537E-08
1.5 6.41294E-08 1.5084E-08 4.90453E-08
2 6.54093E-08 1.48896E-08 5.05197E-08
2.5 6.65759E-08 1.46078E-08 5.19681E-08
3 6.76116E-08 1.42301E-08 5.33815E-08
3.5 6.84976E-08 1.3748E-08 5.47496E-08
4 6.92139E-08 1.31525E-08 5.60614E-08
4.5 6.97397E-08 1.24347E-08 5.7305E-08
5 7.0053E-08 1.15855E-08 5.84675E-08
5.5 7.01311E-08 1.05958E-08 5.95353E-08
6 6.99506E-08 9.45695E-09 6.04937E-08
6.5 6.94875E-08 8.16031E-09 6.13272E-08
7 6.87175E-08 6.69788E-09 6.20196E-08
7.5 6.76161E-08 5.06224E-09 6.25538E-08
8 6.6159E-08 3.24684E-09 6.29121E-08
8.5 6.43223E-08 1.24614E-09 6.30761E-08
9 6.2083E-08 9.44151E-10 6.30271E-08
9.5 5.94191E-08 3.32681E-09 6.27459E-08
10 5.63103E-08 5.90291E-09 6.22133E-08
10.5 5.27383E-08 8.67153E-09 6.14098E-08
11 4.86871E-08 1.16295E-08 6.03167E-08
11.5 4.41439E-08 1.47713E-08 5.89152E-08
12 3.90991E-08 1.80885E-08 5.71875E-08
125 3.35471E-08 2.15699E-08 5.5117E-08
13 2.74869E-08 2.52011E-08 5.2688E-08
13.5 2.09223E-08 2.89646E-08 4.98869E-08
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14
14.5
15
155
16
16.5
17
17.5
18
18.5
19
19.5
20
20.5
21
21.5
22
22,5
23
23.5
24
24.5
25
25.5
26
26.5
27
27.5
28
28.5
29
29.5
30

Local error estimate
Euler solution

h=1

t

76

Matura Project

1.38625E-08
6.32233E-09
1.677E-09
1.0108E-08
1.89367E-08
2.81222E-08
3.76171E-08
4.73675E-08
5.73133E-08
6.73886E-08
7.75221E-08
8.76382E-08
9.76577E-08
1.07499E-07
1.17077E-07
1.2631E-07
1.35113E-07
1.43406E-07
1.51112E-07
1.58157E-07
1.64475E-07
1.70006E-07
1.74698E-07
1.7851E-07
1.81408E-07
1.83369E-07
1.84383E-07
1.84447E-07
1.83571E-07
1.81776E-07
1.7909E-07
1.75552E-07
1.7121E-07

0.000778638

0.000986668

3.28392E-08
3.68007E-08
4.08209E-08
4.48688E-08
4.89096E-08
5.29058E-08
5.68172E-08
6.06011E-08
6.42131E-08
6.76075E-08

7.0738E-08
7.35585E-08
7.60236E-08
7.80899E-08
7.97164E-08
8.08659E-08

8.1505E-08
8.16059E-08
8.11464E-08
8.01109E-08
7.84909E-08
7.62853E-08
7.35008E-08
7.01519E-08
6.62608E-08
6.18575E-08
5.69788E-08
5.16684E-08
4.59756E-08
3.99549E-08
3.36649E-08
2.71671E-08
2.05254E-08

0.00045738

0.00057489

December 2022

4.67017E-08

4.3123E-08
3.91439E-08
3.47607E-08
2.99729E-08
2.47836E-08
1.92001E-08
1.32336E-08
6.89978E-09
2.18958E-10
6.78405E-09
1.40798E-08
2.16341E-08
2.94087E-08
3.73608E-08

4.5444E-08
5.36082E-08
6.18005E-08
6.99655E-08
7.80461E-08
8.59839E-08
9.37205E-08
1.01198E-07
1.08358E-07
1.15147E-07
1.21512E-07
1.27404E-07
1.32779E-07
1.37596E-07
1.41821E-07
1.45425E-07
1.48385E-07
1.50685E-07

0.00032126

0.00041178
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Local error stimate
Euler solution
h=0.5

t

77

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.5

Matura Project

0.001239702
0.001540515
0.001887003
0.002268591
0.002661652
0.003024782
0.003295928
0.003394809
0.003234965
0.002748076
0.001917241
0.000806056
0.000436795
0.001611777
0.002533251
0.003091863
0.003279717
0.003169582
0.002869365
0.002480921
0.002078567
0.001705974
0.001382793
0.001113451
0.000894362

0.00071863
0.000578684

0.00046752

0.000183843

0.000208854

0.00071451

0.00087498

0.00105059

0.0012286

0.0013861

0.00148744

0.00148377

0.00131793

0.00093761

0.00031782

0.00051226

0.00145169

0.00233721

0.00298825

0.0032726

0.00315697

0.00271183

0.00207113

0.00137614

0.00073458

0.00020665

0.00018854

0.00045856

0.00062396

0.00070885

0.00073573

0.00072326

0.0006859

0.0001081

0.0001224

December 2022

0.00052519
0.00066553
0.00083641
0.00103999
0.00127555
0.00153735
0.00181216
0.00207688
0.00229736
0.00243026

0.0024295
0.00225775
0.00190042
0.00137647
0.00073935
6.5103E-05
0.00056789
0.00109845
0.00149322
0.00174634
0.00187191
0.00189451
0.00184135
0.00173741
0.00160321
0.00145436
0.00130195

0.00115342

7.57E-05

8.646E-05
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78

15

2.5

3.5

4.5

5.5

6.5

7.5

8.5

9.5

10

10.5

11

115

12

125

13

135

14

145

15

155

16

16.5

17

17.5

18

Matura Project

0.000236782
0.000267812
0.000302089
0.000339695
0.000380622
0.000424736

0.00047174
0.000521129

0.00057214
0.000623706

0.00067441
0.000722455
0.000765655

0.00080146
0.000827024
0.000839333
0.000835396
0.000812494
0.000768486
0.000702126
0.000613368
0.000503592
0.000375703
0.000234056
8.41947E-05
6.75928E-05
0.000214829
0.000351446
0.000472326
0.000573702

0.00065337
0.000710691
0.000746425

0.000762431

0.0001381

0.0001554

0.0001743

0.0001946

0.0002163

0.000239

0.0002624

0.0002859

0.0003089

0.0003302

0.0003486

0.0003628

0.0003709

0.0003711

0.0003613

0.0003395

0.0003041

0.0002536

0.0001874

0.0001058

1.027E-05

9.649E-05

0.0002105

0.0003269

0.00044

0.0005439

0.0006332

0.0007034

0.0007515

0.0007757

0.0007765

0.0007554

0.0007153

0.0006599

December 2022

9.863E-05
0.0001124
0.0001278
0.0001451
0.0001644
0.0001857
0.0002093
0.0002352
0.0002633
0.0002935
0.0003258
0.0003597
0.0003947
0.0004304
0.0004657
0.0004998
0.0005313
0.0005589
0.0005811
0.0005963
0.0006031
0.0006001
0.0005862

0.000561
0.0005242
0.0004763
0.0004184

0.000352
0.0002791

0.000202
0.0001231
4.467E-05
3.114E-05

0.0001025
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18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

29.5

30

Error quotients ode23

S

79

8.07043981
8.08373427
8.09920435

8.1173755
8.13897346
8.16503649
8.19711269
8.23762935
8.29063858
8.36347741

Matura Project

0.000761318

0.000746093

0.000719851

0.000685541

0.000645809

0.000602906

0.000558665

0.00051451

0.000471497

0.000430363

0.00039159

0.000355453

0.000322072

0.000291454

0.000263526

0.00023816

0.000215198

0.000194465

0.000175778

0.000158956

0.000143825

0.000130222

0.000117992

0.000106995

0.0005934

0.0005197

0.0004425

0.0003651

0.0002901

0.0002195

0.0001545

9.61E-05

4.461E-05

5.776E-08

3.776E-05

6.925E-05

9.493E-05

0.0001154

0.0001311

0.0001428

0.000151

0.0001563

0.0001589

0.0001596

0.0001585

0.000156

0.0001524

0.000148

8.21492956

8.2630791
8.32734416
8.41755649
8.55387921
8.78531843
9.27029244
10.9692811
3.43279955
5.97921103

December 2022

0.0001679
0.0002264
0.0002774
0.0003204
0.0003557
0.0003835
0.0004042
0.0004184
0.0004269
0.0004303
0.0004294
0.0004247

0.000417
0.0004068
0.0003947

0.000381
0.0003662
0.0003507
0.0003347
0.0003185
0.0003023
0.0002862
0.0002704

0.000255

8.02425799
8.03087608
8.03838818
8.04695013
8.05675878
8.06806805
8.08121349
8.09665108
8.11502053
8.13725365



The SIR Model

8.47098443
8.64845021

9.0055213
10.1404962
10.6828969
6.28450102
7.12242457
7.42772305
7.59026538
7.69425934

7.7686834
7.82616386
7.87306525

7.9129322
7.94789011
7.97929244
8.00805153
8.03482334
8.06012097
8.08439327

Error Quotients Euler

S

80

3.965591792

3.91074012

3.863299802

3.825665108

3.801111728

3.794118975

3.81089368

3.860319121

3.955848597

4.120188848

4.399481304

4.92063458

6.288520547

10.62084823

1.542695687

Matura Project

6.88279602
7.23017712
7.41846761
7.53997193
7.627604
7.69608399
7.75303439
7.80285575
7.84833678
7.89142032
7.93361998
7.97629105
8.02086028
8.06909677
8.12353807
8.18831208
8.27099664
8.3875976
8.57929751
8.99489484

3.968590022

3.917478705

3.873732719

3.843531737

3.832172169

3.844781724

3.896823166

4.009272237

4.234503425

4.726304465

6.395702592

5.953915324

1.906438407

2.950889318

3.497246745

December 2022

8.16476942
8.19984926
8.24642103
8.31188537

8.4120596
8.58791252

8.9885341
10.9189109
4.89932701
7.00142426
7.41675969
7.59791294
7.70165176

7.7703766
7.82031524
7.85901288
7.89045465
7.91694905

7.9399352
7.96037011

3.962259497

3.902573094

3.848955661

3.801942302

3.763374578

3.735596264

3.721517141

3.726457399

3.753827033

3.810089892

3.902429081

4.039660904

4.235529986

4.513243378

4.933592939
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Data Rounding Experiments

3.081709094

3.714278174

4.098287709

4.351456902

4.510602024

4.595708388

4.623516202

4.609511454

4.567271228

4.507691606

4.438836244

4.366330374

4.293737714

4.223246377

4.155973456

Matura Project

3.913370875

4.27260265

4.59128854

4.872572096

5.129098564

5.400863422

5.862569832

9.252758589

3.523782824

4.36038606

4.556115371

4.613407094

4.619968603

4.599427663

4.566577896

December 2022

5.722178341

8.813852298

0.974304101

2.880497083

3.674974908

4.040097403

4.245903234

4.367498833

4.436272099

4.47038116

4.479592626

4.472618217

4.453031231

4.424638912

4.390635706

Lastly, the data pertaining to the experimentation with rounding is provided, for both

Euler and ode23.

15-digit precision

t

81

O 0 N o uu & W N = O

=
o

Euler

0.999
0.9985005
0.997851724
0.99700935
0.995916092
0.994498048
0.992660107
0.990280246
0.987202557
0.983228907
0.978109279

0.001
0.0012995
0.001688376
0.002193075
0.002847718
0.003696218
0.004794916
0.006215793
0.008050323
0.010413909
0.013450755

0

0.0002
0.0004599
0.00079758
0.00123619
0.00180573
0.00254498
0.00350396
0.00474712
0.00635718
0.00843997
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7-digit precision

t

O 0 N o U Ao W N = O

=
o

4-digit precision

t

W W N o U1 A W N = O

[y
o

3-digit precision

t

O 00 N o U A W N = O

=
o

2-digit precision

82

Euler

Euler

Euler

Euler

Matura Project

0.999
0.9985005
0.9978517
0.9970093

0.995916
0.9944979
0.9926599

0.99028
0.9872023
0.9832286
0.9781089

0.999
0.9985
0.9979
0.9971

0.996
0.9946
0.9927
0.9903
0.9871

0.983
0.9777

0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999
0.999

0.001
0.0012995
0.0016884
0.0021931
0.0028478
0.0036963

0.004795
0.0062159
0.0080505
0.0104141

0.013451

0.001
0.0013
0.0017
0.0022
0.0029
0.0038
0.0049
0.0064
0.0083
0.0107
0.0138

0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001

December 2022

0

0.0002
0.0004599
0.0007976
0.0012362
0.0018058
0.0025451
0.0035041
0.0047473
0.0063574
0.0084402

0.0002
0.0005
0.0008
0.0012
0.0018
0.0026
0.0036
0.0049
0.0066
0.0087

O O O O o o o o o o o



The SIR Model Matura Project December 2022

t S | R
0 0.999 0.001 0
1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 1 0 0
6 1 0 0
7 1 0 0
8 1 0 0
9 1 0 0
10 1 0 0

83
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15-digit precision

t

7-digit precision

t

3-digit precision

t

84

W 0 N o U ~» W N = O

=
o

W 0 N o uu ~» W N = O

=
o

= O

W 0 N o u & W N

=
o

Ode23

Ode23

Ode23

Matura Project

0.99
0.987333482
0.98450616
0.981511046
0.978341215
0.974989859
0.971450358
0.967716345
0.963781787
0.959641062
0.955289049

0.99
0.9873335
0.9845062
0.9815111
0.9783413
0.9749899
0.9714504
0.9677164
0.9637818
0.9596411
0.9552891

0.99
0.987
0.984
0.981
0.978
0.974

0.97
0.966
0.962
0.957
0.952

0.01
0.01063579
0.01130397
0.01200507
0.01273948
0.01350742
0.01430888
0.01514361
0.01601114
0.01691066
0.01784107

0.01
0.0106358
0.011304
0.0120051
0.0127395
0.0135074
0.0143089
0.0151436
0.0160111
0.0169106
0.017841

0.01
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019

0.02

December 2022

0
0.002030728
0.004189875
0.006483886
0.008919301

0.01150272
0.014240766
0.017140041
0.020207077
0.023448283
0.026869885

0
0.0020307
0.0041898
0.0064838
0.0089192
0.0115026
0.0142406
0.0171399
0.0202069
0.0234481
0.0268697

0.002
0.004
0.006
0.009
0.012
0.015
0.018
0.021
0.025
0.029
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2-digit precision

t

85

O 0 N o U1 & W N = O©

=
o

Ode23

Matura Project

0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

December 2022

o O O O o o o o o o o



